化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1755-1764.DOI: 10.16085/j.issn.1000-6613.2020-2007
收稿日期:
2020-10-08
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
戴一阳
作者简介:
姚羽曼(1996—),女,硕士研究生,研究方向为过程系统工程。E-mail:YAO Yuman1(), LUO Wenjia1, DAI Yiyang2()
Received:
2020-10-08
Online:
2021-04-05
Published:
2021-04-14
Contact:
DAI Yiyang
摘要:
数据驱动方法是一种黑箱模型,具有自主挖掘和构建数据内在关系的优点。随着感知设备的发展和计算能力的提升,数据驱动方法在化工过程故障诊断的研究领域体现出了更大的优势。本文介绍了各类数据驱动方法的原理和作用,并分析了其各自的优缺点与实际应用方向,总结得出深度学习和集成学习是数据驱动方法未来研究重点。同时,本文回顾了近五年来国内外数据驱动方法在化工过程故障诊断中的研究与应用,综合分析了现阶段该领域的研究情况,表明将多种数据驱动方法进行组合来解决化工过程问题的思路具有一定的有效性。并进一步给出了关于数据异常、时间滞后等问题的研究方向。最后,本文建议更多地从方法的机理出发对方法进行研究和优化,在未来的研究思考中应更着重于实用性和时效性。
中图分类号:
姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764.
YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764.
名称 | 高斯分布 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
PCA | 是 | 大规模稳态数据的降维效果好[ | 受数据污染遮挡影响大 | 适用于数据降维 |
PLS | 是 | PCA、相关性分析、多元线性回归一体[ | 故障分离不彻底 | 适用于需要预测不可测变量的数据 |
ICA | 否 | 能获得特征相互独立的特征集[ | 需要数据维度中至多一个维度符合高斯分布 | 适用于特征提取 |
GMM | 否 | 能处理多模态数据[ | 易过度拟合,易受噪声影响 | 适用于混合分布的大样本聚类 |
表1 传统多元统计方法的性能比较与应用
名称 | 高斯分布 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
PCA | 是 | 大规模稳态数据的降维效果好[ | 受数据污染遮挡影响大 | 适用于数据降维 |
PLS | 是 | PCA、相关性分析、多元线性回归一体[ | 故障分离不彻底 | 适用于需要预测不可测变量的数据 |
ICA | 否 | 能获得特征相互独立的特征集[ | 需要数据维度中至多一个维度符合高斯分布 | 适用于特征提取 |
GMM | 否 | 能处理多模态数据[ | 易过度拟合,易受噪声影响 | 适用于混合分布的大样本聚类 |
类型 | 名称 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
决策树 | ID3 C4.5[ CART | 简单,运算快;适用于连续和离散数据;自由学习任何形式的映射[ | 泛化能力弱;过拟合;结果偏向多数类;易受数据不平衡影响 | 属性混合数据的分类[ |
人工神经网络 | BP RBF | 联想记忆;抗干扰能力强 | 易陷入局部极小值 | 数据量较小的回归问题 |
深度学习 | SAE CNN DBN RNN | 提取局部特征;多源信息处理能力;特征提取能力;推测和补全信息的能力 | 信息缺失问题;易局部最优;运算时间长;梯度爆炸 | 数据量较大的强非线性过程 |
支持向量机 | SVM | 不易陷入局部极小 | 对数据缺失和核函数的选择敏感 | 数据量小的高维非线性分类问题 |
集成学习 | bagging boosting stacking | 良好的抗噪能力;减小数据偏置;泛化能力强 | 可能缺失对重要样本的训练;对样本噪声敏感;计算复杂度高;计算时间长 | 数据维度高、结构复杂、特征模糊过程[ |
表2 基于AI的监督学习方法的性能比较和应用
类型 | 名称 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
决策树 | ID3 C4.5[ CART | 简单,运算快;适用于连续和离散数据;自由学习任何形式的映射[ | 泛化能力弱;过拟合;结果偏向多数类;易受数据不平衡影响 | 属性混合数据的分类[ |
人工神经网络 | BP RBF | 联想记忆;抗干扰能力强 | 易陷入局部极小值 | 数据量较小的回归问题 |
深度学习 | SAE CNN DBN RNN | 提取局部特征;多源信息处理能力;特征提取能力;推测和补全信息的能力 | 信息缺失问题;易局部最优;运算时间长;梯度爆炸 | 数据量较大的强非线性过程 |
支持向量机 | SVM | 不易陷入局部极小 | 对数据缺失和核函数的选择敏感 | 数据量小的高维非线性分类问题 |
集成学习 | bagging boosting stacking | 良好的抗噪能力;减小数据偏置;泛化能力强 | 可能缺失对重要样本的训练;对样本噪声敏感;计算复杂度高;计算时间长 | 数据维度高、结构复杂、特征模糊过程[ |
59 | WU Hao, ZHAO Jinsong. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. |
60 | 邵惠鹤. 专家系统及其在石油化工中的应用[J]. 炼油设计, 1989, 19(5): 43-47. |
SHAO Huihe. Expert system and its application in petrochemical industry[J]. Petroleum Refinery Engineering, 1989, 19(5): 43-47. | |
61 | 高金吉. 机泵群实时监测网络和故障诊断专家系统[J]. 中国工程科学, 2001(9): 41-47, 85. |
GAO Jinji. A real-time monitoring network and fault diagnosis expert system for compressors and pumps[J]. Engineering Science, 2001(9): 41-47, 85. | |
62 | 李传坤, 王春利, 高新江. 己内酰胺装置安全运行指导系统研发与应用[J]. 化工进展, 2014, 33(4): 1060-1066. |
LI Chuankun, WANG Chunli, GAO Xinjiang. R&D and application of caprolactam plant safety operation guidance system[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1060-1066. | |
63 | 王春利. 石化装置异常工况监测预警与操作指导系统研发与应用[J]. 中国安全生产, 2015, 10(2): 58-59. |
1 | GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial and Engineering Chemistry Research, 2013, 52(10): 3543. |
2 | ALZGHOULl A, BACKE B, LOFSTRAND M, et al. Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: a hydraulic drive system application[J]. Computers in Industry, 2014, 65(8): 1126-1135. |
3 | ALAUDDIN M, KHAN F, IMTIAZ S, et al. A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 10719-10735. |
4 | 陈奥. 基于改进多元统计方法的故障诊断技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
CHEN Ao. The research on the modified multivariate statistics based fault diagnosis technology[D]. Harbin: Harbin Institute of Technology, 2017. | |
5 | 肖应旺, 姚美银, 刘军, 等. 一种用于故障监测的优化核主元分析方法[J]. 计算机与应用化学, 2019, 36(4): 434-438. |
XIAO Yingwang, YAO Meiyin, LIU Jun, et al. Fault detection based on an optimized kernel principal component analysis[J]. Computers and Applied Chemistry, 2019, 36(4): 434-438. | |
6 | YU Jie. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science, 2012, 68(1): 506-519. |
7 | 高金凤. 基于数据驱动的非线性过程故障诊断方法研究[D]. 辽宁: 沈阳理工大学, 2014. |
GAO Jinfeng. Research on fault diagnosis of nonlinear process based on data-driven[D]. Liaoning: Shenyang Ligong University, 2014. | |
8 | 梁北辰, 戴景民. 偏最小二乘法在系统故障诊断中的应用[J]. 哈尔滨工业大学学报, 2020, 52(3): 156-164. |
LIANG Beichen, DAI Jingmin. Application of PLS in system fault diagnosis[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 156-164. | |
9 | 赵明娟. 石化复杂系统故障诊断方法研究[D]. 河北: 燕山大学, 2015. |
ZHAO Mingjuan. The study on methods of fault diagnosis for petrochemical complex system[D]. Hebei: Yanshan University, 2015. | |
10 | 李方前. 基于数据驱动的TE过程故障诊断研究[D]. 昆明: 昆明理工大学, 2015. |
LI fangqian. Research on TE process fault diagnosis based on data driven[D]. Kunming: Kunming University of Science and Technology, 2015. | |
11 | 潘俊方. 基于流形学习的强化学习算法研究[D]. 成都: 电子科技大学, 2020. |
PAN Junfang. Research on reinforcement learning algorithm based on manifold learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
12 | XUE Zhenxia, ZHANG Roxin, Qin Chuandong, et al. An adaptive twin support vector regression machine based on rough and fuzzy set theories[J]. Neural Computing & Applications, 2020, 32(9): 4709-4732. |
13 | VENKATASUBRAMANIAN V. The promise of artificial intelligence in chemical engineering: Is it here, finally?[J]. AIChE Journal, 2019, 65(2): 466-478. |
14 | BAGHERI M, AKBARI A, MIRBAGHER S A. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review[J]. Process Safety & Environmental Protection: Transactions of the Institution of Chemical Engineers Part B, 2019, 123(B): 229-252. |
15 | APSEMIDIS A, PSARAKIS S, MOGUERZA J. A review of machine learning kernel methods in statistical process monitoring[J]. Computers & Industrial Engineering, 2020, 142: 106376. |
16 | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
17 | 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. |
WEN Chenglin, Feiya LYU. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248. | |
18 | 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. |
XU Jiwei, YANG Yun. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(6): 1082-1092. | |
63 | WANG Chunli. Development and application of abnormal condition monitoring and warning and operation guidance system in petrochemical plant[J]. China Occupational Safety and Health, 2015, 10(2): 58-59. |
19 | 姜如霞, 黄水源, 段文影, 等. C4.5算法的研究及改进[J]. 南昌大学学报(理科版), 2019, 43(1): 90-96. |
JIANG Ruxia, HUANG Shuiyuan, DUAN Wenying, et al. A research and improvement of C4.5 algorithm[J]. Journal of Nanchang University (Natural Science), 2019, 43(1): 90-96. | |
20 | BHOWMICK A, SINGH H. Artificial Intelligence: a modern approach[J]. International Journal of Information and Computing Science, 2018, 5(6): 4. |
21 | MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 1967: 281-297. |
22 | 朱军, 胡文波. 贝叶斯机器学习前沿进展综述[J]. 计算机研究与发展, 2015, 52(1): 16-26. |
ZHU Jun, HU Wenbo. Recent advances in Bayesian machine learning[J]. Journal of Computer Research and Development, 2015, 52(1): 16-26. | |
23 | 赵月南. 基于贝叶斯网络的电机故障诊断研究[D]. 杭州: 浙江大学, 2016. |
ZHAO Yuenan. The research of motor fault detection based on Bayesian network[D]. Hangzhou: Zhejiang University, 2016. | |
24 | BAUM L, PETRIE T, SOULES G, et al. A maximization technique occurring in statistical analysis of probabilistic functions of Markov chains[J]. The Annals of Mathematical Statistics, 1970, 41(1): 164-171. |
25 | BAUM L. An inequality and associated maximization technique in statistical estimation for probabilistic function of Markov processes[J]. Journal of Inequalities in Pure and Applied Mathematics, 1972(3): 1-8. |
26 | 解亚萍, 赵鹏, 党伟明. 基于KMC-KECA的间歇发酵过程的故障诊断[J]. 石油化工自动化, 2016, 52(6): 21-26. |
XIE Yaping, ZHAO Peng, DANG Weiming. Fault diagnosis for batch fermentation process based on KMC-KECA[J]. Automation in Petro-Chemical Industry, 2016, 52(6): 21-26. | |
27 | 刘丽云, 吕玉海, 牛鲁娜, 等. 基于K-means聚类的TE过程故障诊断与识别[J]. 自动化与仪器仪表, 2020(7): 5-11. |
LIU Liyun, Yuhan LYU, NIU Luna, et al. Fault diagnosis and identification based on K-means clustering of Tennessee Eastman process[J]. Automation and Instrumentation, 2020(7): 5-11. | |
28 | LI Chuankun, ZHAO Dongfeng, MU Shanjun, et al. Fault diagnosis for distillation process based on CNN-DAE[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 598-604. |
29 | ARUNTHAVANATHAN R, KHAN F, AHMED S, et al. Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique[J]. Computers and Chemical Engineering, 2020, 134: 106-697. |
30 | ZHENG Songfeng, ZHAO Jin. States identification of complex chemical process based on unsupervised learning[J]. Computer Aided Chemical Engineering, 2018, 44: 2239-2244. |
31 | 张祥, 崔哲, 董玉玺, 等. 基于VAE-DBN的故障分类方法在化工过程中的应用[J]. 过程工程学报, 2018, 18(3): 590-594. |
ZHANG Xiang, CUI Zhe, DONG Yuxi, et al. Application of fault classification method based on VAE-DBN in chemical process[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 590-594. | |
32 | 赵帅. 基于集成学习的高斯过程回归软测量建模方法研究[D]. 无锡: 江南大学, 2018. |
ZHAO Shuai. Research of Gaussian process regression soft sensor modeling based on Ensemble Learning[D]. Wuxi: Southern Yangtze University, 2018. | |
33 | 汪庆宁, 杨鑫, 戴一阳. 基于PPA的多元统计分析方法在过程故障诊断的应用[J]. 计算机与应用化学, 2018, 35(10): 821-832. |
WANG Qingning, YANG Xin, DAI Yiyang. The multivariate statistics analysis method based on PPA and applications in process fault diagnosis[J]. Computers and Applied Chemistry, 2018, 35(10): 821-832. | |
34 | 钱锟. 基于组合KPCA与改进ELM的工业过程故障诊断研究[D]. 重庆: 重庆大学, 2016. |
QIAN Kun. Research on industrial process fault diagnosis based on combined KPCA and improved ELM[D]. Chongqing: Chongqing University, 2016. | |
35 | 曹玉苹, 卢霄, 田学民, 等. 基于动态单类随机森林的非线性过程监控方法[J]. 化工学报, 2017, 68(4): 1459-1465. |
CAO Yuping, LU Xiao, TIAN Xuemin, et al. Nonlinear process monitoring using dynamic one-class random forest[J]. CIESC Journal, 2017, 68(4): 1459-1465. | |
36 | 夏永彬. 聚合釜粗糙集及神经网络故障诊断研究[D]. 秦皇岛: 燕山大学, 2018. |
XIA Yongbin. Research on the fault diagnosis of polymerizer based on Rough Set and Neural Network[D]. Qinhuangdao: Yanshan University, 2018. | |
37 | NORAZWAN M N, MOHD A H, CHE R, et al. Multi-scale kernel Fisher discriminant analysis with adaptive neurofuzzy inference system (ANFIS) in fault detection and diagnosis framework for chemical process systems[J]. Neural Computing and Applications, 2020(32): 9283-9297. |
38 | YU Wanke, ZHAO Chunhui. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081-5091. |
39 | Feiya LYU, WEN Chenglin, LIU Meiqin, et al. Weighted time series fault diagnosis based on a stacked sparse autoencoder[J]. Journal of Chemometrics, 2017, 31(9): e2912. |
40 | 张展博, 王振雷, 王昕. 基于正交局部慢性特征的故障检测方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 693-700. |
ZHANG Zhanbo, WANG Zhenlei, WANG Xin. Fault detection based on orthogonal local slow features[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8): 693-700. | |
41 | 冀丰偲, 余云松, 张早校. LDA _SVM方法在化工过程故障诊断中的应用[J]. 高校化学工程学报, 2020, 34(2): 487-494. |
JI Fengca, YU Yunsong, ZHANG Zaoxiao. Application of LDA and SVM method in fault diagnosis of chemical process[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 487-494. | |
42 | 任玉佳, 王骥, 田文德. 基于特征工程和KELM的化工过程故障检测与识别[J]. 高校化学工程学报, 2019, 33(5): 1271-1284. |
REN Yujia, WANG Ji, TIAN Wende. Fault detection and identification in chemical processes based on feature engineering and kernel extreme learning machine[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1271-1284. | |
43 | 易维淋. 基于极限学习机的工业过程故障检测与诊断方法研究[D]. 青岛: 中国石油大学(华东), 2017. |
YI Weilin. Fault detection and diagnosis of industrial processes based on extreme learning machine[D]. Qingdao: China University of Petroleum (East China), 2017. | |
44 | HU Zhixin, JIANG Peng. An imbalance modified deep neural network with dynamical incremental learning for chemical fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 540-550. |
45 | 夏丽莎, 杨玉英, 方华京. 基于EasyEnsemble的化工过程故障诊断性能改进[J]. 控制理论与应用, 2017, 34(1): 49-53. |
XIA Lisha, YANG Yuying, FANG Huajing. Fault diagnosis performance improvement for chemical process based on EasyEnsemble method[J]. Control Theory & Applications, 2017, 34(1): 49-53. | |
46 | ASKARIAN M, ZARGHAMI R, FARAHANI F J, et al. Fault diagnosis of chemical processes considering fault frequency via Bayesian network[J]. Canadian Journal of Chemical Engineering, 2016, 94(12): 2315-2325. |
47 | 张远绪, 程换新. 基于改进的DAEN在TE过程故障诊断中的应用研究[J]. 电子测量技术, 2019, 42(11): 56-60. |
ZHANG Yuanxu, CHENG Huanxin. Application of improved DAEN in fault diagnosis of TE process[J]. Electronic Measurement Technology, 2019, 42(11): 56-60. | |
48 | PENG Peng, ZHANG Wenjia, ZHANG Yi, et al. Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis[J]. Neurocomputing, 2020, 407: 232-245. |
49 | 罗磊, 程非凡, 邱彤, 等. 改进CCM算法检测外部扰动下系统变量间的时滞和因果关系[J]. 化工学报, 2016, 67(12): 5122-5130. |
LUO Lei, CHENG Feifan, QIU Tong, et al. An improved convergent cross mapping algorithm for causality identification and time delay analysis between systemic variables under external disturbance[J]. CIESC Journal, 2016, 67(12): 5122-5130. | |
50 | 冯立伟, 李元, 张成, 等. 基于时空近邻标准化和局部离群因子的复杂过程故障检测[J]. 控制理论与应用, 2020, 37(3): 651-657. |
FENG Liwei, LI Yuan, ZHANG Cheng, et al. Time-space neighborhood standardization-local outlier factor based fault detection for complex process[J]. Control Theory & Applications, 2020, 37(3): 651-657. | |
51 | 宋晓云, 田文德, 靳满满. 非稳态过程故障诊断方法研究[J]. 现代化工, 2016, 36(8): 182-185. |
SONG Xiaoyun, TIAN Wende, JIN Manman. Fault diagnosis method for unsteady process[J]. Modern Chemical Industry, 2016, 36(8): 182-185. | |
52 | 戴一阳, 陈宁, 赵劲松, 等. 人工免疫系统在间歇化工过程故障诊断中的应用[J]. 化工学报, 2009, 60(1): 172-176. |
DAI Yiyang, CHEN Ning, ZHAO Jinsong, et al. Application of AIS to batch chemical process fault diagnosis[J]. CIESC Journal, 2009, 60(1): 172-176. | |
53 | ZHAO Jinsong, SHU Yidan, ZHU Jianfeng, et al. An online fault diagnosis strategy for full operating cycles of chemical processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5015-5027. |
54 | TANATAVIKOR H, YAMASHITA Y. Batch process monitoring based on fuzzy segmentation of multivariate time-series[J]. Journal of Chemical Engineering of Japan, 2017, 50(1): 53-63. |
55 | BARRAGAN J F, FONTES C H, EMBIRUCU M. A wavelet-based clustering of multivariate time series using a multiscale SPCA approach[J]. Computers & Industrial Engineering, 2016, 95: 144-155. |
56 | 王楠, 张日东, 吴胜. 一种基于LSTM和MLP结合的化工过程故障诊断方法: CN111123894A[P], 2020-05-08. |
WANG Nan, ZHANG Ridong, WU Sheng. A fault diagnosis method for chemical process based on LSTM and MLP: CN111123894A[P], 2020-05-08. | |
57 | PARK Pangun, DI MARCO P, SHIN Hyejeon, et al. Fault detection and diagnosis using combined autoencoder and long short-term memory network[J]. Sensors, 2019, 19(21): 4612. |
58 | 魏小林. 基于自适应PPA及贝叶斯网络的化工过程故障诊断方法研究[D]. 重庆: 重庆理工大学, 2020. |
WEI Xiaolin. Study on fault diagnosis method of chemical process based on adaptive PPA and Bayesian network[D]. Chongqing: Chongqing University of Technology, 2020. |
[1] | 朱佳兴, 郝琳, 刘国钊, 卫宏远. 化工过程本质安全评估方法研究进展与展望[J]. 化工进展, 2022, 41(8): 4009-4024. |
[2] | 孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255. |
[3] | 李国友, 张新魁, 才士文, 贾曜宇, 宁泽. 基于改进KFDA与DE优化SOM的故障诊断模型及其化工过程诊断[J]. 化工进展, 2022, 41(4): 1793-1801. |
[4] | 李欣铜, 陈志冰, 魏志强, 李苏桐, 陈旭, 宋凯. 具有输入数据注意力机制的卷积神经网络用于氟化工产品质量预测[J]. 化工进展, 2022, 41(2): 593-600. |
[5] | 邹志云, 朱文超, 刘英莉, 孟磊, 郭宁, 于蒙. 小型特种精细化工过程自动化和信息化研究发展趋势探讨[J]. 化工进展, 2020, 39(S2): 269-275. |
[6] | 袁健宝,王政,徐一凡,杨燕霞,贾小平,王芳. 基于复杂网络边负载分配理论的化工过程级联故障风险传播路径[J]. 化工进展, 2019, 38(08): 3525-3533. |
[7] | 李洪, 孟莹, 李鑫钢, 高鑫. 蒸馏过程强化技术研究进展[J]. 化工进展, 2018, 37(04): 1212-1228. |
[8] | 姜英, 王政, 秦艳, 袁健宝, 贾小平, 王芳. 基于复杂网络的化工过程层次符号有向图模型建立及关键节点识别[J]. 化工进展, 2018, 37(02): 444-451. |
[9] | 宋泓阳, 孙晓岩, 项曙光. 人工神经网络在化工过程中的应用进展[J]. 化工进展, 2016, 35(12): 3755-3762. |
[10] | 韦朝海, 廖建波, 胡芸 . 煤的基本化工过程与污染特征分析[J]. 化工进展, 2016, 35(06): 1875-1883. |
[11] | 王政, 孙锦程, 王迎春, 姜英, 贾小平, 王芳. 基于复杂网络理论的符号有向图(SDG)化工故障诊断[J]. 化工进展, 2016, 35(05): 1344-1352. |
[12] | 魏伟胜,徐 建,鲍晓军. 基于γ射线扫描的过程设备故障诊断[J]. 化工进展, 2011, 30(11): 2563-. |
[13] | 孙宏伟1,陈建峰2. 我国化工过程强化技术理论与应用研究进展 [J]. 化工进展, 2011, 30(1): 1-. |
[14] | 程吉锋,潘海天,夏陆岳,蔡亦军. 化工过程故障诊断中的多元统计方法 [J]. 化工进展, 2009, 28(5): 750-. |
[15] | 黄建超,赵劲松,孙 巍,丁艳昆. 基于PCA固体垃圾焚烧炉的早期故障诊断 [J]. 化工进展, 2006, 25(12): 1489-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |