1 | GE J, FENG A, ZHANG G, et al. Study of the factors influencing alkaline flooding in heavy-oil reservoirs[J]. Energy & Fuels, 2011, 26(5): 2875-2882. | 2 | MARTíNEZ-PALOU R, MOSQUEIRA M D L, ZAPATA-RENDóN B, et al. Transportation of heavy and extra heavy crude oil by pipeline: a review[J]. Journal of Petroleum Science and Engineering, 2011, 75(3/4): 274-282. | 3 | HASAN S W, GHANNAM M T, ESMAIL N. Heavy crude oil viscosity reduction and rheology for pipeline transportation[J]. Fuel, 2010, 89(5): 1095-1100. | 4 | ESKIN D, RATULOWSKI J, AKBARZADEH K, et al. Modelling asphaltene deposition in turbulent pipeline flows[J]. The Canadian Journal of Chemical Engineering, 2011, 89(3): 421-441. | 5 | YAO H, DAI Q, YOU Z, et al. Modulus simulation of asphalt binder models using molecular dynamics (MD) method[J]. Construction and Building Materials, 2018, 162: 430-441. | 6 | YANG Y, GUO J, CHENG Z, et al. New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils[J]. Energy & Fuels, 2017, 31(2): 1159-1173. | 7 | MU?OZ J A D, ANCHEYTA J, CASTA?EDA L C. Required viscosity values to ensure proper transportation of crude oil by pipeline[J]. Energy & Fuels, 2016, 30(11): 8850-8854. | 8 | HASSANEAN M H, AWAD M E, MARWAN H, et al. Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow[J]. Egyptian Journal of Petroleum, 2016, 25(1): 39-44. | 9 | ALI H L, AL-GHANNAM A K, AL-RAWI M J. Chemical structure of asphaltenes in heavy crude oils investigated by n.m.r.[J]. Fuel, 1990, 69(4): 519-521. | 10 | GROENZIN H, MULLINS O C. Asphaltene molecular size and structure[J]. The Journal of Physical Chemistry A, 1999, 103(50): 11237-11245. | 11 | CASTRO L V, VAZQUEZ F. Fractionation and characterization of Mexican crude oils[J]. Energy & Fuels, 2009, 23(3): 1603-1609. | 12 | TREJO F, ANCHEYTA J. Characterization of asphaltene fractions from hydrotreated Maya crude oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(23): 7571-7579. | 13 | AGUILERA-MERCADO B, HERDES C, MURGICH J, et al. Mesoscopic simulation of aggregation of asphaltene and resin molecules in crude oils[J]. Energy & Fuels, 2006, 20(1): 327-338. | 14 | BARCENAS M, OREA P. Molar-mass distributions of asphaltenes in the presence of inhibitors: experimental and computer calculations[J]. Energy & Fuels, 2011, 25(5): 2100-2108. | 15 | LEóN O, ROGEL E, ESPIDEL J, et al. Asphaltenes:structural characterization, self-association, and stability behavior[J]. Energy & Fuels, 2000, 14(1): 6-10. | 16 | SPIECKER P M, GAWRYS K L, KILPATRICK P K. Aggregation and solubility behavior of asphaltenes and their subfractions[J]. Journal of Colloid and Interface Science, 2003, 267(1): 178-193. | 17 | GRAY M R, TYKWINSKI R R, STRYKER J M, et al. Supramolecular assembly model for aggregation of petroleum asphaltenes[J]. Energy & Fuels, 2011, 25(7): 3125-3134. | 18 | ROGEL E. Simulation of interactions in asphaltene aggregates[J]. Energy & Fuels, 2000, 14(3): 566-574. | 19 | ZHANG Y, TAKANOHASHI T, SHISHIDO T, et al. Estimating the interaction energy of asphaltene aggregates with aromatic solvents[J]. Energy & Fuels, 2005, 19(3): 1023-1028. | 20 | ALVAREZ-RAMIREZ F, RAMIREZ-JARAMILLO E, RUIZ-MORALES Y. Calculation of the interaction potential curve between asphaltene-asphaltene, asphaltene-resin, and resin-resin systems using density functional theory[J]. Energy & Fuels, 2006, 20(1): 195-204. | 21 | CASTELLANO O, GIMON R, SOSCUN H. Theoretical study of the σ-π and π-π interactions in heteroaromatic monocyclic molecular complexes of benzene, pyridine, and thiophene dimers: implications on the resin-asphaltene stability in crude oil[J]. Energy & Fuels, 2011, 25(6): 2526-2541. | 22 | AL-SABAGH A M, NOOR EL-DIN M R, MORSI R E, et al. Styrene-maleic anhydride copolymer esters as flow improvers of waxy crude oil[J]. Journal of Dispersion Science and Technology,2009, 30(3): 420-426. | 23 | ERCEGKUZMIC A, RADOSEVIC M, BOGDANIC G, et al. Studies on the influence of long chain acrylic esters polymers with polar monomers as crude oil flow improver additives[J]. Fuel,2008,87(13/14): 2943-2950. | 24 | 李向博. 稠油油溶性降黏剂的合成与评价[D]. 北京: 北京化工大学, 2016. | 24 | LI X B. Synthesis and evaluation of oil-soluble viscosity reducer for heavy oil[D]. Beijing: Beijing University of Chemical Technology, 2016. | 25 | 孟科全. 稠油降粘技术研究进展[J]. 天然气与石油, 2009, 27(3): 30-34. | 25 | MENG K Q. Research progress of viscosity reduction technology for heavy oil[J]. Natural Gas and Oil, 2009, 27(3): 30-34. | 26 | 曹明,曹旦夫,吴杰,等. BEM-JN油基降黏剂作用机理与应用试验[J]. 油气储运, 2011, 30(1): 53-55. | 26 | CAO M, CAO D F, WU J, et al. BEM-JN oil-based viscosity reducer action mechanism and application test[J]. Oil & Gas Storage and Transportation, 2011, 30(1): 53-55. | 27 | 陈宁宁,宋立新,郑云重,等. 新型聚合油溶性稠油降黏剂的合成及性能研究[J]. 化学试剂, 2017, 39(2): 134-136. | 27 | CHEN N N, SONG L X, ZHEN Y Z, et al. Study on synthesis and performance of new polymer oil-soluble heavy oil viscosity reducer[J]. Chemical Reagents, 2017, 39(2): 134-136. | 28 | 陈照军. 新疆塔河稠油流动性改进剂的设计与应用研究[D]. 青岛: 中国石油大学(华东), 2014. | 28 | CHEN Z J. Design and application research of Xinjiang Tahe heavy oil fluidity improver[D]. Qingdao: China University of Petroleum, 2014. | 29 | 杜丹丹. 大庆油溶性稠油降黏剂的合成与分析[D]. 济南: 山东大学, 2016. | 29 | DU D D. Synthesis and analysis of Daqing oil-soluble heavy oil viscosity reducer[D]. Jinan: Shandong University, 2016. | 30 | 毛金成,刘佳伟,李勇明,等. 超稠油化学降黏剂研究与进展[J]. 应用化工, 2016, 45(7): 1367-1371. | 30 | MAO J C, LIU J W, LI Y M, et al. Research and development of super heavy oil chemical viscosity reducer[J]. Applied Chemical Industry, 2016, 45(7): 1367-1371. | 31 | 吴本芳,郭金波. 稠油油溶性降黏剂研究进展概况[J]. 油气储运, 2003, 22(2): 1-6. | 31 | WU B F, GUO J B. Research progress of oil-soluble viscosity reducer for heavy oil[J]. Oil & Gas Storage and Transportation, 2003, 22(2): 1-6. | 32 | 马高红. 重质油组分分子结构与粘温性能的关系[D]. 青岛: 中国石油大学(华东), 2015. | 32 | MA G H. Relationship between molecular structure of heavy oil components and viscosity-temperature performance[D]. Qingdao: China University of Petroleum, 2015. | 33 | 王鹏, 董泽蛟, 谭忆秋, 等. 基于分子模拟的沥青蜂状结构成因探究[J]. 中国公路学报, 2016, 29(3): 9-16. | 33 | WANG P, DONG Z J, TAN Y Q, et al. Research on the origin of asphalt bee structure based on molecular simulation[J]. China Journal of Highway and Transport, 2016, 29(3): 9-16. | 34 | LI D D, GREENFIELD M L. High internal energies of proposed asphaltene structures[J]. Energy & Fuels, 2011, 25(8): 3698-3705. | 35 | TAKANOHASHI T, SATO S, SAITO I, et al. Molecular dynamics simulation of the heat-induced relaxation of asphaltene aggregates[J]. Energy & Fuels, 2003, 17(1): 135-139. | 36 | FANOURGAKIS G S, MEDINA J S, PROSMITI R. Determining the bulk viscosity of rigid water models[J]. The Journal of Physical Chemistry A, 2012, 116(10): 2564-2570. | 37 | 刘清云. 稠油降黏-渗流改善剂的合成、性能评价与机理研究[D]. 武汉: 中国地质大学, 2018. | 37 | LIU Q Y. Study on the synthesis, performance and mechanism of heavy oil viscosity reduction and seepage flow improver[D].Wuhan: China University of Geosciences, 2018. | 38 | 秦冰, 罗咏涛, 李本高, 等. 稠油油溶性降黏剂结构与性能的关系[J]. 石油与天然气化工, 2012, 41(5): 499-503. | 38 | QIN B, LUO Y T, LI B G, et al. Relationship between structure and performance of oil-soluble viscosity reducer for heavy oil[J]. Chemical Engineering of Oil & Gas, 2012, 41(5): 499-503. | 39 | 陈陆建, 杨兆中. 阴离子型油溶性稠油降黏剂的合成及评价[J]. 应用化工, 2016, 45(2): 312-315. | 39 | CHEN L J, YANG Z Z. Synthesis and evaluation of anionic oil-soluble heavy oil viscosity reducer[J]. Applied Chemical Industry, 2016, 45(2): 312-315. | 40 | MAO J, LIU J, PENG Y, et al. Quadripolymers as viscosity reducers for heavy oil[J]. Energy & Fuels, 2018, 32(1): 119-124. |
|