化工进展 ›› 2019, Vol. 38 ›› Issue (12): 5225-5237.DOI: 10.16085/j.issn.1000-6613.2019-0536
收稿日期:
2019-04-08
出版日期:
2019-12-05
发布日期:
2019-12-05
通讯作者:
陈宏霞
作者简介:
陈宏霞(1980—),女,博士,副教授,研究方向为腐蚀监测与控制。E-mail: 基金资助:
Hongxia CHEN(),Lin LIU,Hongyang XIAO,Yuan SUN
Received:
2019-04-08
Online:
2019-12-05
Published:
2019-12-05
Contact:
Hongxia CHEN
摘要:
由于两相之间会不断转换,相变换热被称为复杂的传热传质过程,其过程中会引起相变腐蚀,如冷凝液滴腐蚀、气泡腐蚀以及多相流流动腐蚀等。目前对于气液相变腐蚀的研究集中在对腐蚀产物的表征、分析,忽略了相变过程中由于能量传递引起的界面变化对腐蚀的影响。本文从相变腐蚀机理、腐蚀防护两方面出发,系统地总结管道内外冷凝液滴腐蚀、气泡腐蚀与多相流流动腐蚀等气液相变腐蚀领域的研究进展,并对其中存在的问题进行总结,同时归纳了用于研究相变腐蚀过程的腐蚀预测模型,分析其应用场合以及各种模型的优势与不足,以期为研究气液相变腐蚀监测与控制的学者提供参考,并指出气液相变换热过程中的气液两相界面腐蚀问题是未来相变腐蚀研究的重要方向。
中图分类号:
陈宏霞,刘霖,肖红洋,孙源. 气液相变换热过程中界面腐蚀的基础研究进展[J]. 化工进展, 2019, 38(12): 5225-5237.
Hongxia CHEN,Lin LIU,Hongyang XIAO,Yuan SUN. Basic research progress of interface corrosion in gas-liquid phase transformation heat process[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5225-5237.
预测模型 | 备注 | 研究者 |
---|---|---|
燃烧含硫2.5%的煤(未考虑水蒸气影响) | Islam等[ | |
硫酸分压大于0.1013Pa | Verhoff和Branchero[ | |
硫酸蒸气分压为0~2Pa,水蒸气分压为0~14185.5Pa | Halstead等[ | |
基于燃料成分和过量空气比估算烟气中硫酸 | Okkes[ | |
a取决于烟气中水蒸气的分压 | Qin等[ | |
β取决于锅炉的过量空气比 | Feng等[ | |
综合考虑水蒸气、SO2含量、原煤灰分含量、粉煤灰比例以及粉煤灰中Fe含量等参数 | Li等[ | |
表1 酸露点的主要预测模型
预测模型 | 备注 | 研究者 |
---|---|---|
燃烧含硫2.5%的煤(未考虑水蒸气影响) | Islam等[ | |
硫酸分压大于0.1013Pa | Verhoff和Branchero[ | |
硫酸蒸气分压为0~2Pa,水蒸气分压为0~14185.5Pa | Halstead等[ | |
基于燃料成分和过量空气比估算烟气中硫酸 | Okkes[ | |
a取决于烟气中水蒸气的分压 | Qin等[ | |
β取决于锅炉的过量空气比 | Feng等[ | |
综合考虑水蒸气、SO2含量、原煤灰分含量、粉煤灰比例以及粉煤灰中Fe含量等参数 | Li等[ | |
1 | JOHNSTONE H F. An electrical method for the determination of the dew-point of flue gases[R]. University of Illinois at Urbana-Champaign: Engineering Experiment Station, 1929. |
2 | EBARA R, TANAKA F, KAWASAKI M. Sulfuric acid dew point corrosion in waste heat boiler tube for copper smelting furnace[J]. Engineering Failure Analysis, 2013, 33: 29-36. |
3 | DING Q, TANG X F, YANG Z G. Failure analysis on abnormal corrosion of economizer tubes in a waste heat boiler[J]. Engineering Failure Analysis, 2017, 73: 129-138. |
4 | YANG Y G, ZHANG T, SHAO Y W, et al. In situ study of dew point corrosion by electrochemical measurement[J]. Corrosion Science, 2013, 71: 62-71. |
5 | YAN Y, CHE D F, SUN K, et al. Adsorption and agglomeration characteristics of ash particles after reducing flue gas temperature below the acid dew point[J]. Energy Procedia, 2017, 142: 3301-3306. |
6 | LIANG Z Y, ZHAO Q X. Failure analysis of spiral finned tube on the economizer[J]. Engineering Failure Analysis, 2013, 28: 208-214. |
7 | LIANG Z Y, ZHAO Q X, WANG Y G, et al. Coupling mechanism of dew point corrosion and viscous ash deposits[J]. Materials and Corrosion, 2014, 65(8): 797-802. |
8 | 陈衡, 潘佩媛, 赵钦新, 等. 燃煤工业锅炉黏性积灰和露点腐蚀耦合机理[J]. 化工学报, 2017, 68(12): 4774-4783. |
CHEN H, PAN P Y, ZHAO Q X, et al. Coupling mechanism of viscose ash deposition and dew point corrosion in industrial coal-fired boiler[J]. CIESC Journal, 2017, 68(12): 4774-4783. | |
9 | 马海东, 王云刚, 赵钦新, 等. 生物质锅炉积灰特性与露点腐蚀[J]. 化工学报, 2016, 67(12): 5237-5243. |
MA H D, WANG Y G, ZHAO Q X, et al. Characteristics of ash deposit and dew point corrosion in biofuel boiler[J]. CIESC Journal, 2016, 67(12): 5237-5243. | |
10 | WANG Y G, ZHAO Q X, ZHANG Z X, et al. Mechanism research on coupling effect between dew point corrosion and ash deposition[J]. Applied Thermal Engineering, 2013, 54(1): 102-110. |
11 | PAILLASSA R, DIEUMEGARD M, ESTEVOYER M. Corrosion control in the gathering system at Lacq sour gas field[C]//Proc. 2nd Int. Congress of Metallic. Texas: NACE International, 1963. |
12 | GUNALTUN Y M, BELGHAZI A. Control of top of the line corrosion by chemical treatment[C]//Corrosion. Houston: NACE International, 2001. |
13 | XU Y, HUANG Y, WANG X, et al. Experimental study on pipeline internal corrosion based on a new kind of electrical resistance sensor[J]. Sensors and Actuators B: Chemical, 2016, 224: 37-47. |
14 | LARREY D, GUNALTUN Y M. Correlation of cases of top of line corrosion with calculated water condensation rates[C]//Corrosion. Florida: NACE International, 2000. |
15 | LI Z, SUN F, SHI Y, et al. Experimental study and mechanism analysis on low temperature corrosion of coal fired boiler heating surface[J]. Applied Thermal Engineering, 2015, 80: 355-361. |
16 | FLINT D, KEAR R W. The corrosion of a steel surface by condensed films of sulphuric acid[J]. Journal of Applied Chemistry, 1951, 1(9): 388-393. |
17 | 梁志远, 赵钦新, 张智超, 等. 表面渗层和CrNiMo涂层材料的露点腐蚀[J]. 中国表面工程, 2012, 25(5): 56-61. |
LIANG Z Y, ZHAO Q X, ZHANG Z C, et al. Dew point corrosion of nickelizing layers and CrNiMo coatings[J]. China Surface Engineering, 2012, 25(5): 56-61. | |
18 | WANG H, JIN X, HU G, et al. Changing oxide layer structures with respect to the dew point prior to hot-dip galvanizing of δ-TRIP steel[J]. Surface and Coatings Technology, 2018, 337: 260-269. |
19 | WEI W, SUN F, SHI Y, et al. Theoretical prediction of acid dew point and safe operating temperature of heat exchangers for coal-fired power plants[J]. Applied Thermal Engineering, 2017, 123: 782-790. |
20 | HODGE F G, SILENCE W L. Predicting the corrosivity of an operating FGD system[J]. Power Engineering, 1994, 98(12): 30-34. |
21 | HAN H, HE Y L, TAO W Q. A numerical study of the deposition characteristics of sulfuric acid vapor on heat exchanger surfaces[J]. Chemical Engineering Science, 2013, 101: 620-630. |
22 | WILSON R. Condensation of sulfuric acid and water mixtures in laminar flow[D]. Pennsylvania: Lehigh University, 1989. |
23 | HE Y L, HAN H, TANG S Z, et al. Sulfuric acid deposition characteristics of H-type finned tube bank with 10 rows[J]. International Journal of Heat and Mass Transfer, 2015, 81: 137-141. |
24 | VERHOFF F H, BANCHERO J T. Predicting dew points of flue gases[J]. Chemical Engineering Progress, 1974, 70(8): 71-72. |
25 | QIN K F, FAN J R, CHI Z H, et al. Boiler and heat exchanger fouling, slagging, abrasion, and corrosion prevention principles and calculation[M].Beijing: Science Press, 1994: 377-401. |
26 | MULLER P. A contribution to the problem of the action of sulfuric acid on the dew point temperature of flue gases[J]. Chemical Engineering and Technology, 1959, 31: 345-350. |
27 | OKKES A G. Get acid dew point of flue gas[J]. Hydrocarbon Process, 1987, 66(7): 53-56. |
28 | HALSTEAD W D, TALBOT J R W. Sulphuric acid dewpoint in power station flue gases[J]. Journal of the Institute of Energy, 1980, 53: 142-145. |
29 | ISLAM M, POJTANABUNTOENG T, GUBNER R. Condensation corrosion of carbon steel at low to moderate surface temperature and iron carbonate precipitation kinetics[J]. Corrosion Science, 2016, 111: 139-150. |
30 | NYBORG R, DUGSTAD A. Top of line corrosion and water condensation rates in wet gas pipelines[C]//Corrosion. Tennessee: NACE International, 2007. |
31 | ZARENEZHAD B, AMINIAN A. A multi-layer feed forward neural network model for accurate prediction of flue gas sulfuric acid dew points in process industries[J]. Applied Thermal Engineering, 2010, 30(6/7): 692-696. |
32 | BAGHBAN A, BAHADORI M, ROZYN J, et al. Estimation of air dew point temperature using computational intelligence schemes[J]. Applied Thermal Engineering, 2016, 93: 1043-1052. |
33 | WANG Y C, TANG G H. Prediction of sulfuric acid dew point temperature on heat transfer fin surface[J]. Applied Thermal Engineering, 2016, 98: 492-501. |
34 | FENG J K, SHEN Y T, YANG R C. Principle and calculation of the boiler[M].Beijing: Science Press, 2003: 371–373. |
35 | LI X, WU Z, ZHANG L, et al. An updated acid dew point temperature estimation method for air-firing and oxy-fuel combustion processes[J]. Fuel Processing Technology, 2016, 154: 204-209. |
36 | DEWAARD C, WILLIAMS D E. Prediction of carbonic acid corrosion in natural gas pipelines[J]. Industrial Finishing and Surface Coatings, 1976, 28(340): 24-26. |
37 | DEWAARD C, LOTZ U, MILLIAMS D E. Predictive model for CO2 corrosion engineering in wet natural gas pipelines[J]. Corrosion, 1991, 47(12): 976-985. |
38 | VITSE F, NEŠIC S, GUNALTUN Y, et al. Mechanistic model for the prediction of top-of-the-line corrosion risk[J]. Corrosion, 2003, 59(12): 1075-1084. |
39 | VITSE F, ALAM K, GUNALTUN Y, et al. Semi-empirical model for prediction of the top-of-the-line corrosion risk[C]//57th NACE Annual Conference. Houston: Omni Press, 2002. |
40 | ZHANG Z, HINKSON D, SINGER M, et al. A mechanistic model of top-of-the-line corrosion[J]. Corrosion, 2007, 63(11): 1051-1062. |
41 | KOLAWOLE F O, KOLAWOLE S K, OLUGBEMI O M, et al. Green corrosion inhibitory potentials of cassava plant (manihot esculenta crantz) extract nanoparticles (CPENPs) in coatings for oil and gas pipeline[M]. Croatia: IntechOpen, 2019. |
42 | GLADKIKH N, MAKARYCHEV Y, MALEEVA M, et al. Synthesis of thin organic layers containing silane coupling agents and azole on the surface of mild steel. Synergism of inhibitors for corrosion protection of underground pipelines[J]. Progress in Organic Coatings, 2019, 132: 481-489. |
43 | MAHLOBO M G R, MJWANA P, TLADI M N A, et al. Evaluation of cathodic protection performance of carbon steel pipeline buried in soil: a review[C]//2018 IEEE 9th International Conference on Mechanical and Intelligent Manufacturing Technologies(ICMIMT). Cape town, South Africa, 2018: 37-43. |
44 | NARAYAN S, SINGH T, SINGH S, et al. Experiments on the effects of varying subcooled conditions on the dynamics of single vapor bubble and heat transfer rates in nucleate pool boiling regime[J]. International Journal of Heat and Mass Transfer, 2019, 134: 85-100. |
45 | OZBEY A, KARIMZADEHKHOUEI M, SEFIANE K, et al. On bubble dynamics in subcooled nucleate boiling on a platinum wire[J]. International Journal of Thermal Sciences, 2019, 137: 1-12. |
46 | JEVEC J M, KLIMAS S J, KING P, et al. Multivariable assessment of flow accelerated corrosion and steam generator fouling: literature review[R]. Palo Alto, California: EPRI, 2003 |
47 | 祁良奎, 柳建华, 杨大章, 等. 海水冷却水过冷沸腾及析晶结垢实验研究[J]. 能源工程, 2016, 17: 9-12. |
QI L K, LIU J H, YANG D Z, et al. Experimental study on subcooled boiling and crystallization scaling of seawater cooling water[J]. Energy Engineering, 2016, 17: 9-12. | |
48 | JIN M, SHORT M. Multiphysics modeling of two-phase film boiling within porous corrosion deposits[J]. Journal of Computational Physics, 2016, 316: 504-518. |
49 | UCHIDA S, ASAKURA Y, SUZUKI H. Deposition of boron on fuel rod surface under sub-cooled boiling conditions-an approach toward understanding AOA occurrence[J]. Nuclear Engineering and Design, 2011, 241(7): 2398-2410. |
50 | ASAKURA Y, KIKUCHI M, UCHIDA S, et al. Deposition of iron oxide on heated surfaces in boiling water[J]. Nuclear Science and Engineering, 1978, 67(1): 1-7. |
51 | 程海鹏, 王君恒. 油气井的空泡腐蚀机理[J]. 石油化工腐蚀与防护, 2015, 32(5): 41-44. |
CHENG H P, WANG J H. Cavitation corrosion mechanism of oil and gas wells[J]. Corrosion and Protection in Petrochemical Industry, 2015, 32(5): 41-44. | |
52 | CHEN Z Y. Micro-course of cavitation erosion[J]. Chinese Journal of Mechanical Engineering, 2008, 21(1): 1. |
53 | KORNFELD M, SUVOROV L. On the destructive action of cavitation[J]. Japanese Journal of Applied Physics, 1944, 15: 495-506. |
54 | SINGER B G, HARVEY S J. Cavitation damage studies using plasticine[J]. International Journal of Mechanical Sciences, 1979, 21(7): 409-416. |
55 | MAO Y F, PENG Y, ZHANG J M. Study of cavitation bubble collapse near a wall by the modified lattice Boltzmann method[J]. Water, 2018, 10(10): 1439-1439. |
56 | SOYAMA H. Corrosion behavior of pressure vessel steel exposed to residual bubbles after cavitation bubble collapse[J]. Corrosion, 2011, 67(2): 1-8. |
57 | 刘秀梅, 贺杰, 陆建, 等. 表面张力对固壁旁空泡运动特性影响的理论和实验研究[J]. 物理学报, 2009, 58(6): 4020-4025. |
LIU X M, HE J, LU J, et al. Surface tension effects on the growth and collapse of cavitation bubbles near a rigid boundary[J]. Acta Physica Sinica, 2009, 58(6): 4020-4025. | |
58 | 陈卫. 几种海洋工程常用金属的空泡腐蚀性能[J]. 热加工工艺, 2015, 44(8): 17-20. |
CHEN W. Cavitation corrosion performance of several oceaneering metals[J]. Hot Working Technology, 2015, 44(8): 17-20. | |
59 | JI Z. A study on caviation damage reduction with gases injection[C]//International Symposium on Propeller and Cavitation. Wuxi, China, 1986. |
60 | 刘景军, 雍兴跃, 林玉珍, 等. 不锈钢在氯化物介质中的空泡腐蚀行为及机理[J]. 中国腐蚀与防护学报, 2005, 25(3): 157-162. |
LIU J J, YONG X Y, LIN Y Z, et al. Cavitation corrosion behavior and mechanism of stainless steel in chloride medium[J]. Journal of Chinese Society for Corrosion and Protection, 2005, 25(3): 157-162. | |
61 | BAGHERY P, FARZAM M, MOUSAVI A B, et al. Ni-TiO2 nanocomposite coating with high resistance to corrosion and wear[J]. Surface and Coatings Technology, 2010, 204(23): 3804-3810. |
62 | 李科, 翟晓凡, 管方, 等. 船用螺旋桨防护技术及其材料研究进展[J]. 中国腐蚀与防护学报, 2018, 37(6): 495-503. |
LI K, ZHAI X F, GUAN F, et al. Progress on materials and protection technologies for marine propeller[J]. Journal of Chinese Society for Corrosion and Protection, 2018, 37(6): 495-503. | |
63 | 叶帆, 李新勇, 刘强, 等. 雅克拉气田集输管线的腐蚀及其防治[J]. 腐蚀与防护, 2008, 29(11): 710-712. |
YE F, LI X Y, LIU Q, et al. Corrosion and prevention of gathering and transmission pipeline of yakra gas field[J]. Corrosion and Protection, 2008, 29(11): 710-712. | |
64 | MA J L, WEN J B. Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy[J]. Journal of Alloys and Compounds, 2010, 496: 110. |
65 | CHENG Q L, ZHANG W H, TAO B. Investigation of the electrochemical corrosion of copper under a micrometric electrolyte droplet using a three-electrode system[J]. Acta Physica Sinica, 2015, 31(7): 1345-1350. |
66 | LI S, TEAGUE M T, DOLL G L, et al. Interfacial corrosion of copper in concentrated chloride solution and the formation of copper hydroxychloride[J]. Corrosion Science, 2018, 141: 243-254. |
67 | LIU X Q, LIU Z L, HU J D, et al. Influence of Cr content on corrosion behaviour of tube pile steel in half-immersion environment[J]. Transactions of the Indian Institute of Metals, 2018, 71(1): 209-218. |
68 | REFAIT P, GROLLEAU A M, JEANNIN M, et al. Corrosion of mild steel at the seawater/sediments interface: mechanisms and kinetics[J]. Corrosion Science, 2018, 130: 76-84. |
69 | XU W, ZHANG B, YANG L, et al. Liquid-air interface corrosion of A537 steel in high level liquid radioactive waste simulant in a sealed container[J]. Journal of the Electrochemical Society, 2019, 166(2): 33-41. |
70 | 陈登攀. 气液两相流流型特性分析及其软件系统实现[D]. 青岛: 青岛科技大学, 2017. |
CHEN P D. Characteristics analysis of gas-liquid two-phase flow pattern and its software system implementation[D]. Qingdao: Qingdao University of Science and Technology, 2017. | |
71 | 王德国, 何仁洋, 董山英. 长距离油、气、水混输管道内壁流动腐蚀的研究进展[J]. 天然气与石油, 2002, 20(4): 24-29. |
WANG D G,HE R Y,DONG S Y. Advances in study on internal flowage corrosion of multiphase pipelines[J]. Natural Gas and Oil, 2002, 20(4): 24-29. | |
72 | 张智, 施太和, 周理志, 等. 油气田开发过程中的流场诱导腐蚀[J]. 石油钻探技术, 2007, 35(3): 79. |
ZHANG Z, SHI T H, ZHOU L Z, et al. Flow field induced corrosion in the process of oil and gas field development[J]. Petroleum Drilling Techniques, 2007, 35(3): 79. | |
73 | 张辉, 缑文娟. 45#钢在含沙氯化物两相流中的磨蚀性能试验研究[J]. 水利水电技术, 2018, 49(10): 186-191. |
ZHANG H, HOU W J. Experimental study on wear behavior of steel in two-phase flow containing sand and chloride[J]. Water Resources and Hydropower Engineering, 2018, 49(10): 186-191. | |
74 | 杨元龙. 流动冷却水对船舶管路的冲刷加速腐蚀机理[J]. 船海工程, 2015, 44(4): 82-87. |
YANG Y L. Erosion accelerated corrosion mechanism of flowing cooling water on ship pipeline[J]. Ocean Engineering, 2015, 44(4): 82-87. | |
75 | 丁矿, 朱宏武, 张建华, 等. 直角弯管内液固两相流固体颗粒冲蚀磨损分析[J]. 油气储运, 2013, 32(3): 241-246. |
DING K, ZHU H W, ZHANG J H, et al. Erosion wear analysis of solid particles in liquid-solid two-phase flow of right-angle bend pipe[J]. Oil and Gas Storage and Transportation, 2013, 32(3): 241-246. | |
76 | BOZZINI B, RICOTTI M E. Evaluation of erosion-corrosion in multiphase flow via CFD and experimental analysis[J]. Wear, 2003, 255(1): 237. |
77 | ZHANG Y L, MCLAURY B S, SHIRAZI S A. Improvements of particle near-wall velocity and erosion predictions using a commercial CFD code[J]. Journal of Fluids Engineering, 2009, 131(3): 303-312. |
78 | 李洋, 曾祥国, 肖雨果, 等. 气液两相流在油气弯管处冲刷腐蚀的数值模拟[J]. 石油机械, 2015, 43(12): 104-108. |
LI Y, ZENG X G, XIAO Y G, et al. Numerical simulation of oil and gas elbow erosion corrosion under gas-liquid two-phase flow[J]. China Petroleum Machinery, 2015, 43(12): 104-108. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[4] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 赵巍, 赵德银, 李世瀚, 刘洪达, 孙进, 郭艳秋. 三嗪型天然气管道缓蚀型减阻剂合成与应用[J]. 化工进展, 2023, 42(S1): 391-399. |
[7] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[8] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[9] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[10] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[11] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[12] | 王云刚, 焦健, 邓世丰, 赵钦新, 邵怀爽. 冷凝换热与协同脱硫性能实验分析[J]. 化工进展, 2023, 42(8): 4230-4237. |
[13] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[14] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[15] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |