化工进展 ›› 2019, Vol. 38 ›› Issue (08): 3508-3516.DOI: 10.16085/j.issn.1000-6613.2018-2106
收稿日期:
2018-10-26
出版日期:
2019-08-05
发布日期:
2019-08-05
通讯作者:
田蒙奎
作者简介:
刘润阳(1993—),男,硕士研究生,研究方向为化工过程装备。E-mail:基金资助:
Runyang LIU(),Tinggui YAN,Ting ZHANG,Mengkui TIAN()
Received:
2018-10-26
Online:
2019-08-05
Published:
2019-08-05
Contact:
Mengkui TIAN
摘要:
微反应器中亚毫米级的流体通道具有高效的传质传热效应,使其能够强化反应过程。随着微细加工技术的发展,制备出了耐高温耐腐蚀的陶瓷基微反应器,适用于更严苛的反应条件,然而陶瓷基微反应器的制备存在微结构成型工艺复杂、密封难度较大等问题。本文主要介绍不同陶瓷材料微反应器的制备工艺,重点论述陶瓷基微反应器制备过程中常规微加工技术的优化和新型微加工技术的引入,对比这些技术对微结构成型的改善效果。列举常用的陶瓷微通道密封连接方法,概述其特点和适用范围。并提出在陶瓷基微反应器制备的后续研究过程中,应注重陶瓷基微反应器制备的成功率和新技术的开发,完善陶瓷基微反应器的性能,将陶瓷基微反应器引入到更广泛的应用体系中。
中图分类号:
刘润阳,颜婷珪,张婷,田蒙奎. 陶瓷基微反应器制备的研究进展[J]. 化工进展, 2019, 38(08): 3508-3516.
Runyang LIU,Tinggui YAN,Ting ZHANG,Mengkui TIAN. A review on the microfabrication of ceramic microreactors[J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3508-3516.
基本尺度 | 范围 |
---|---|
通道尺寸/mm | 0.05~1.0 |
截面积/mm2 | 0.002~1.0 |
表面积/mm2 | 2.0~200.0 |
通道体积/mm3 | 0.1~50.0 |
气体通量/mL·min-1 | 1~1000 |
液体通量/μL·min-1 | 1~10000 |
表1 微化工系统的基本尺度范围(单通道)[23]
基本尺度 | 范围 |
---|---|
通道尺寸/mm | 0.05~1.0 |
截面积/mm2 | 0.002~1.0 |
表面积/mm2 | 2.0~200.0 |
通道体积/mm3 | 0.1~50.0 |
气体通量/mL·min-1 | 1~1000 |
液体通量/μL·min-1 | 1~10000 |
序号 | 参考文献 | 微反应器设计参数 | 微加工工艺 | 应用 |
---|---|---|---|---|
1 | Knitter等[ | 氧化铝基,16个微通道,微通道高600μm,宽400μm | 平版印刷,低压注塑 | 催化剂快速筛选,甲烷的氧化偶联 |
2 | Wang等[ | 氧化铝基,14个微通道,微通道高400μm,宽300μm | 深度X射线光刻,失模技术,压膜成型 | 乙醇蒸汽重整 |
3 | Sullivan等[ | 氧化铝基,10个通道,微通道高550μm | 高压层压,叠层共烧 | 冷热交换,甲烷蒸汽重整 |
4 | Aran等[ | 氧化铝基,单通道,微通道高500μm,宽1000μm | 机械微加工,热处理 | 光催化降解 |
5 | Meschke等[ | 碳化硅基,13个通道,微通道高1500μm,宽1500μm | 机械微加工,叠层共烧 | 流体换热 |
6 | Stephen等[ | 碳化硅基,单通道和混合通道,微通道高600μm,上底宽700μm,下底宽300μm | 激光切割,等静压共烧 | 高温还原 |
7 | Okamasa等[ | 低温共烧生瓷片,单通道和腔室 | 低温共烧技术,钎焊技术密封 | 正丁烷催化 |
8 | Karol等[ | 低温共烧生瓷片,单通道和腔室 | 丝网印刷,牺牲模板,低温共烧技术 | 研究牺牲模板 |
9 | Jiang等[ | 低温共烧生瓷片,微通道宽500 μm | 机械微加工,多步低压层压 | 高温产氢 |
10 | Pedro等[ | 低温共烧生瓷片,单通道和三进料口 | 机械微加工,低温共烧技术 | 纳米晶体生成 |
11 | Malecha等[ | 低温共烧生瓷片,单通道,微通道高750μm,宽500μm | 丝网印刷,陶瓷与聚合物键合,低温共烧技术 | 荧光检测 |
12 | Ren等[ | 无机硅聚合物,单通道,微通道高50μm,宽500μm | 机械微加工,丝网印刷,模塑成型 | 合成纳米颗粒 |
表2 陶瓷基微反应器的制作及微流尺寸
序号 | 参考文献 | 微反应器设计参数 | 微加工工艺 | 应用 |
---|---|---|---|---|
1 | Knitter等[ | 氧化铝基,16个微通道,微通道高600μm,宽400μm | 平版印刷,低压注塑 | 催化剂快速筛选,甲烷的氧化偶联 |
2 | Wang等[ | 氧化铝基,14个微通道,微通道高400μm,宽300μm | 深度X射线光刻,失模技术,压膜成型 | 乙醇蒸汽重整 |
3 | Sullivan等[ | 氧化铝基,10个通道,微通道高550μm | 高压层压,叠层共烧 | 冷热交换,甲烷蒸汽重整 |
4 | Aran等[ | 氧化铝基,单通道,微通道高500μm,宽1000μm | 机械微加工,热处理 | 光催化降解 |
5 | Meschke等[ | 碳化硅基,13个通道,微通道高1500μm,宽1500μm | 机械微加工,叠层共烧 | 流体换热 |
6 | Stephen等[ | 碳化硅基,单通道和混合通道,微通道高600μm,上底宽700μm,下底宽300μm | 激光切割,等静压共烧 | 高温还原 |
7 | Okamasa等[ | 低温共烧生瓷片,单通道和腔室 | 低温共烧技术,钎焊技术密封 | 正丁烷催化 |
8 | Karol等[ | 低温共烧生瓷片,单通道和腔室 | 丝网印刷,牺牲模板,低温共烧技术 | 研究牺牲模板 |
9 | Jiang等[ | 低温共烧生瓷片,微通道宽500 μm | 机械微加工,多步低压层压 | 高温产氢 |
10 | Pedro等[ | 低温共烧生瓷片,单通道和三进料口 | 机械微加工,低温共烧技术 | 纳米晶体生成 |
11 | Malecha等[ | 低温共烧生瓷片,单通道,微通道高750μm,宽500μm | 丝网印刷,陶瓷与聚合物键合,低温共烧技术 | 荧光检测 |
12 | Ren等[ | 无机硅聚合物,单通道,微通道高50μm,宽500μm | 机械微加工,丝网印刷,模塑成型 | 合成纳米颗粒 |
1 | YUEJ. Multiphase flow processing in microreactors combined with heterogeneous catalysis for efficient and sustainable chemical synthesis[J]. Catalysis Today, 2017, 308: 3-19. |
2 | HONDAT, MIYAZAKIM, NAKAMURAH, et al. Controllable polymerization of N-carboxy anhydrides in a microreaction system[J]. Lab on a Chip, 2005, 5(8): 812-818. |
3 | 董广新, 蒋稼欢. 基于微流动混合的微纳米粒子合成进展[J]. 化工进展, 2010, 29(11): 2026-2033. |
DONGG X, JIANGJ H. Recent progress in microfluidic mixing-based synthesis of micro/nanoparticles[J]. Chemical Industry and Engineering Progress, 2010, 29(11): 2026-2033. | |
4 | GÓMEZDEP S, MARTÍNEZCISNEROSC S, PUYOLM, et al. Microreactor with integrated temperature control for the synthesis of CdSe nanocrystals.[J]. Lab on a Chip, 2012, 12(11): 1979-1986. |
5 | ABIEVR, SVETLOVS, HAASES. Hydrodynamics and mass transfer of gas-liquid and liquid-liquid taylor flow in micro channels: a review[J]. Chemical Engineering & Technology, 2017, 40(11): 1985-1998. |
6 | GARCÍA-HERNANDON, ACOSTA-IBORRAA, RUIZ-RIVASU, et al. Experimental investigation of fluid flow and heat transfer in a single-phase liquid flow micro-heat exchanger[J]. International Journal of Heat & Mass Transfer, 2009, 52(23): 5433-5446. |
7 | HEGGOD, OOKAWARAS. Multiphase photocatalytic microreactors[J]. Chemical Engineering Science, 2017, 169: 66-67. |
8 | KRIVECM, SUHADOLNIKL, CEH M, et al. Highly efficient TiO2-based microreactor for photocatalytic applications[J]. Applied Materials & Interfaces, 2013, 5(18): 9088-9094. |
9 | WANGK, LUOG. Microflow extraction: a review of recent development[J]. Chemical Engineering Science, 2016, 169: 18-33. |
10 | WANGN, ZHANGX, WANGY, et al. Microfluidic reactors for photocatalytic water purification.[J]. Lab on a Chip, 2014, 14(6): 1074-1082. |
11 | ILIESCUC, TAYLORH, AVRAMM, et al. A practical guide for the fabrication of microfluidic devices using glass and silicon[J]. Biomicrofluidics, 2012, 6(1): 16505. |
12 | HEULEM, VUILLEMINS, GAUCKLERL J. Powder‐based ceramic meso- and microscale fabrication processes[J]. Advanced Materials, 2003, 15(15): 1237-1245. |
13 | MORENOA M, WILHITEB A. Autothermal hydrogen generation from methanol in a ceramic microchannel network[J]. Journal of Power Sources, 2010, 195(7): 1964-1970. |
14 | EHRFELDW, HESSELV, LÖWEH. Microreactors: new technology for modern chemistry[M]. NewYork: Wiley-VCH, 2001. |
15 | SATTARI-NAJAFABADIM, ESFAHANYM N, WUZ, et al. Mass transfer between phases in microchannels: a review[J]. Chemical Engineering and Processing-Process Intensification, 2018, 127: 213-237. |
16 | 陈光文, 赵玉潮, 乐军, 等. 微化工过程中的传递现象[J]. 化工学报, 2013, 64(1): 63-75. |
CHENG W, ZHAOY C, LEJ, et al. Transport phenomena in micro-chemical engineering[J]. Journal of Chemical Industry and Engineering(China), 2013, 64(1): 63-75. | |
17 | WANGK, LIL, XIEP, et al. Liquid-liquid microflow reaction engineering[J]. Reaction Chemistry & Engineering, 2017, 2(5): 661-627. |
18 | 任武荣. 陶瓷先驱体制备微流控芯片及其化学应用[D]. 长沙: 国防科学技术大学, 2015. |
RENW R. Fabrication of microfluidic reactors from preceramic polymers and chemistry application[D]. Changsha: Graduate School of National University of Defense Technology, 2015. | |
19 | MALECHAK, REMISZEWSKAE, PIJANOWSKAD G. Surface modification of low and high temperature co-fired ceramics for enzymatic microreactor fabrication[J]. Sensors & Actuators B: Chemical, 2014, 190(1): 873-880. |
20 | 刘朝杨, 程璇. 透明超疏水疏油涂层的制备及性能[J]. 功能材料, 2013, 44(6): 870-873. |
LIUZ Y, CHENGX. Synthesis and properties of transparent superhydrophobic and oleophobic coatings[J]. Journal of Functional Materials, 2013, 44(6):870-873. | |
21 | XIAOC, SIL, LIUY, et al. Ultrastable coaxial cable-like superhydrophobic mesh with self-adaption effect: facile synthesis and oil/water separation application[J]. Journal of Materials Chemistry A, 2016, 4(21):8080-8090. |
22 | 陈俊, 王振辉, 王玮, 等. 超疏水表面材料的制备与应用[J]. 中国材料进展, 2013, 32(7):399-405. |
CHENJ, WANGZ H, WANGW, et al. Preparation and application of super hydrophobic surfaces[J]. Materials China, 2013, 32(7):399-405. | |
23 | 陈光文, 袁权. 微化工技术[J]. 化工学报, 2003, 54(4): 427-439. |
CHENW G, YUANQ. Micro-chemical technology[J]. Journal of Chemical Industry and Engineering(China), 2003, 54(4): 427-439. | |
24 | GAUDETM, ARSCOTTS. A user-friendly guide to the optimum ultraviolet photolithographic exposure and greyscale dose of SU-8 photoresist on common MEMS, microsystems, and microelectronics coatings and materials[J]. Analytical Methods, 2017, 9(17): 2495-2504. |
25 | DRIESCHES V D, LUCKLUMF, BUNGEF, et al. 3D printing solutions for microfluidic chip-to-world connections[J]. Micromachines, 2018, 9(2): 71. |
26 | KNITTERR, GÖHRINGD, RISTHAUSP, et al. Microfabrication of ceramic microreactors[J]. Microsystem Technologies, 2001, 7(3): 85-90. |
27 | KNITTERR, LIAUWM A. Ceramic microreactors for heterogeneously catalysed gas-phase reactions[J]. Lab on a Chip, 2004, 4(4): 378-383. |
28 | WANGJ, LIUG, XIONGY, et al. Fabrication of ceramic microcomponents and microreactor for the steam reforming of ethanol[J]. Microsystem Technologies, 2008, 14(9/10/11): 1245-1249. |
29 | KEE R J, ALMANDB B, BLASIJ M, et al. The design, fabrication, and evaluation of a ceramic counter-flow microchannel heat exchanger[J]. Applied Thermal Engineering, 2011, 31(11/12): 2004-2012. |
30 | MURPHYD M, MANERBINOA, PARKERM, et al. Methane steam reforming in a novel ceramic microchannel reactor[J]. International Journal of Hydrogen Energy, 2013, 38(21): 8741-8750. |
31 | MURPHYD M, PARKERM, SULLIVANN P. The interplay of heat transfer and endothermic chemistry within a ceramic microchannel reactor[J]. Journal of Thermal Science & Engineering Applications, 2014, 6(3): 031007. |
32 | BLAKELEYB, SULLIVANN. Fuel processing in a ceramic microchannel reactor: expanding operating windows[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3794-3802. |
33 | ARANH C, CHINTHAGINJALAJ K, GROOTER, et al. Porous ceramic mesoreactors: a new approach for gas-liquid contacting in multiphase microreaction technology[J]. Chemical Engineering Journal, 2011, 169(1/2/3): 239-246. |
34 | ARANH C, SALAMOND, RIJNAARTST, et al. Porous photocatalytic membrane microreactors (P2M2): a new reactor concept for photochemistry[J]. Journal of Photochemistry & Photobiology A: Chemistry, 2011, 225(1): 36-41. |
35 | MESCHKEF, RIEBLERG, HESSELV, et al. Hermetic gas-tight ceramic microreactors[J]. Chemical Engineering & Technology, 2005, 28(4): 465-473. |
36 | NEWMANS G, GUL, LESNIAKC, et al. Rapid Wolff-Kishner reductions in a silicon carbide microreactor[J]. Green Chemistry, 2013, 16(1): 176-180. |
37 | BELAVICD, HROVATM, DOLANCG, et al. Design of LTCC-based ceramic structure for chemical microreactor[J]. Radio Engineering, 2012, 21(1): 195-200. |
38 | OKAMASAT, LEE G G, SUZUKIY, et al. Development of a micro catalytic combustor using high-precision ceramic tape casting[J]. Journal of Micromechanics & Microengineering, 2006, 16(9): 198-205. |
39 | MALECHAK, MAEDERT, JACQC. Fabrication of membranes and microchannels in low-temperature co-fired ceramic (LTCC) substrate using novel water-based sacrificial carbon pastes[J]. Journal of the European Ceramic Society, 2012, 32(12): 3277-3286. |
40 | KHOONGL E, TANY M, LAM Y C. Overview on fabrication of three-dimensional structures in multi-layer ceramic substrate[J]. Journal of the European Ceramic Society, 2010, 30(10): 1973-1987. |
41 | JIANGB, HABERJ, RENKENA, et al. Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors[J]. Lab on a Chip, 2014, 15(2): 563-74. |
42 | GÓMEZDEP S, PUYOLM, IZQUIERDOD, et al. A ceramic microreactor for the synthesis of water soluble CdS and CdS/ZnS nanocrystals with on-line optical characterization.[J]. Nanoscale, 2012, 4(4): 1328-1335. |
43 | MARTÍNEZ-CISNEROSC S, PEDROG D, PUYOLM, et al. Design, fabrication and characterization of microreactors for high temperature syntheses[J]. Chemical Engineering Journal, 2012, 211/212(47): 432-441. |
44 | IBÁÑEZ-GARCÍAN, ALONSOJ, MARTÍNEZ-CISNEROSC S, et al. Green-tape ceramics. New technological approach for integrating electronics and fluidics in microsystems[J]. Trac Trends in Analytical Chemistry, 2008, 27(1): 24-33. |
45 | SIKANENT, AURAS, HEIKKILÄL, et al. Hybrid ceramic polymers: new, nonbiofouling, and optically transparent materials for microfluidics.[J]. Analytical Chemistry, 2010, 82(9): 3874-82. |
46 | MALECHAK. The implementation of fluorescence-based detection in LTCC microfluidic modules[J]. International Journal of Applied Ceramic Technology, 2016, 13(1): 69-77. |
47 | MALECHAK, PIJANOWSKAD G, GOLONKAL J, et al. Low temperature co-fired ceramic (LTCC)-based biosensor for continuous glucose monitoring[J]. Sensors & Actuators B: Chemical, 2011, 155(2): 923-929. |
48 | MALECHAK, GANCARZI, GOLONKAL J. A PDMS/LTCC bonding technique for microfluidic application[J]. Journal of Micromechanics & Microengineering, 2009, 19(10): 105016. |
49 | MALECHAK, GANCARZI, TYLUSW. Argon plasma-assisted PDMS-LTCC bonding technique for microsystem applications[J]. Journal of Micromechanics & Microengineering, 2012, 20(11): 115006. |
50 | COUCEIROP, ALONSOCHAMARROJ. Microfabrication of monolithic microfluidic platforms using low temperature co-fired ceramics suitable for fluorescence imaging.[J]. Analytical Chemistry, 2017, 89(17) : 9147-9153. |
51 | COLOMBOP, MERAG, RIEDELR, et al. Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics[J]. Journal of the American Ceramic Society, 2010, 93(7): 1805-1837. |
52 | KUMARB V M, KIMY W. Processing of polysiloxane-derived porous ceramics: a review[J]. Science & Technology of Advanced Materials, 2010, 11(4): 69801-69803. |
53 | RENW, PERUMALJ, WANGJ, et al. Whole ceramic-like microreactors from inorganic polymers for high temperature or/and high pressure chemical syntheses.[J]. Lab on a Chip, 2014, 14(4): 779-786. |
54 | PARKY J, YUT, YIM S J, et al. A 3D-printed flow distributor with uniform flow rate control for multi-stacked microfluidic systems.[J]. Lab on a Chip, 2018, 18(8): 1250-1258. |
55 | LEE W, KWOND, CHOIW, et al. 3D-printed microfluidic device for the detection of pathogenic bacteria using size-based separation in helical channel with trapezoid cross-section.[J]. Scientific Reports, 2015, 5(2): 7717. |
56 | 李亚运, 司云晖, 熊信柏, 等. 陶瓷3D打印技术的研究与进展[J]. 硅酸盐学报, 2017, 45(6):793-805. |
LIY Y, SIY H, XIONGX B, et al. Research and progress on three dimensional printing of ceramic materials[J]. Journal of the Chinese Ceramic Society, 2017, 45(6):793-805. | |
57 | 陶文亮, 田蒙奎. 陶瓷膜管与铁磁膨胀合金的连接工艺研究[J]. 贵州工业大学学报(自然科学版), 2003, 32(2): 8-10. |
TAOW L, TIANM L. The study of connecting technique between ceramic membrane tube and iron-alloy[J]. Journal of Guizhou University of Technology(Natural Science Edition), 2003, 32(2): 8-10. | |
58 | 王玲玲, 丁毅, 马立群. 金属和陶瓷的钎焊技术及新发展[J]. 焊接技术, 2007, 36(5): 1-3. |
WANGL L, DINGY, MA L Q. Brazing technology and new development of metal and ceramics[J]. Welding Technology, 2007, 36(5): 1-3. | |
59 | FAND, HUANGJ, SUNX, et al. Correlation between microstructure and mechanical properties of active brazed Cf/SiC composite joints using Ti-Zr-Be[J]. Materials Science & Engineering A, 2016, 667: 332-339. |
60 | SINGHM, ASTHANAR. Joining and integration of ZrB2-based ultra-high temperature ceramic composites using advanced brazing technology[J]. Journal of Materials Science, 2010, 45(16): 4308-4320. |
61 | 韩敏, 陶文亮, 艾浩, 等. α-Al2O3陶瓷膜管与金属粘接强度的实验研究[J]. 粘接, 2007, 28(4): 32-35. |
HANM, TAOW L, AIH, et al. Study on bonding strength of α-Al2O3 ceramic membrane tube to steel[J]. Adhesion, 2007, 28(4): 32-35. | |
62 | 郑瑞琪, 余云照. 结构胶粘剂及胶接技术[M]. 北京: 科学出版社, 1993. |
ZHENGR Q, YUY Z. Structural adhesive and bonding technology[M]. Beijing: Science Press, 1993. | |
63 | 魏晓莹, 王汝敏, 闫超, 等. 改性耐高温胶粘剂的研究进展[J]. 中国胶粘剂, 2010, 19(5):54-58. |
WEIX Y, WANGR M, YANC, et al. Research progress of modified adhesives for high-temperature resistance[J]. China Adhesives, 2010, 19(5):54-58. | |
64 | 刘成伦, 徐锋. 混合硅酸盐无机胶粘剂的研制[J]. 中国胶粘剂, 2005, 14(11):19-22. |
LIUC L, XUF. Development of a compound silicate inorganic adhesives[J]. China Adhesives, 2005, 14(11):19-22. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 邓建, 王凯, 骆广生. 面向硝基化学品安全生产的绝热连续微反应技术发展及思考[J]. 化工进展, 2023, 42(8): 3923-3925. |
[3] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[4] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[5] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[6] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[7] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[8] | 黄起中, 刘冰, 马红鹏, 吕文杰. 基于新型微通道分离技术的甲醇制烯烃废水处理[J]. 化工进展, 2023, 42(2): 669-676. |
[9] | 陈秋实, 郑辰, 张敏弟. 微通道反应器氯磷酸单丁酯与正丁醇酯化反应数值模拟[J]. 化工进展, 2022, 41(S1): 29-35. |
[10] | 张猛, 李树谦, 张东, 马坤茹. 微细通道内蒸汽直接接触间歇凝结汽液相界面运动特性[J]. 化工进展, 2022, 41(9): 4644-4652. |
[11] | 曾龙, 郑贵森, 邓大祥, 孙健, 刘永恒. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634. |
[12] | 冯龙龙, 钟珂, 张羽森, 商庆春, 贾洪伟. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509. |
[13] | 毛纪金, 张东辉, 孙利利, 雷钦晖, 屈健. 两种烧结通道的沸腾传热和阻力特性对比[J]. 化工进展, 2022, 41(7): 3483-3492. |
[14] | 梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892. |
[15] | 洪波. 取消药剂消耗的电脱盐污水物理法预处理[J]. 化工进展, 2022, 41(5): 2788-2796. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |