1 |
LINNHOFF B , HINDMARSH E . The pinch design method for heat exchanger networks[J]. Chemical Engineering Science, 1983, 38(5): 745-763.
|
2 |
YEE T F, GROSSMANN I E , KRAVANJA Z . Simultaneous optimization models for heat integration—Ⅰ. Area and energy targeting and modeling of multi-stream exchangers[J]. Computers & Chemical Engineering, 1990, 14(10): 1151-1164.
|
3 |
YEE T F, GROSSMANN I E . Simultaneous optimization models for heat integration—Ⅱ. Heat exchanger network synthesis[J]. Computers & Chemical Engineering, 1990, 14(10): 1165-1184.
|
4 |
霍兆义, 尹洪超, 赵亮, 等 . 国内换热网络综合方法研究进展与展望[J]. 化工进展, 2012, 31(4): 726-731.
|
|
HUI Z Y , YIN H C , ZHAO L , et al . Process and prospect for the methodology of heat exchanger network synthesis in China[J]. Chemical Industry and Engineering Progress, 2012, 31(4): 726-731.
|
5 |
郝艳红, 冯杰, 易群, 等 . 典型煤基动力系统的3E分析[J]. 中国电机工程学报, 2013, 33(14): 51-58.
|
|
HAO Y H , FENG J , YI Q , et al . Energy, environment and economy(3E) analysis on typical coal-based power systems[J]. Proceedings of the CSEE, 2013, 33(14): 51-58.
|
6 |
SHIRAZI A , TAYLOR R A , WHITE S D , et al . Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: an energetic, economic and environmental (3E) assessment[J]. Renewable Energy, 2016, 86: 955-971.
|
7 |
YI Q , FENG J , WU Y , et al . 3E (energy, environmental, and economy) evaluation and assessment to an innovative dual-gas polygeneration system[J]. Energy, 2014, 66(2): 285-294.
|
8 |
EINI S , SHAHHOSSEINI H , DELGARM N , et al . Multi-objective optimization of a cascade refrigeration system: exergetic, economic, environmental, and inherent safety analysis[J]. Applied Thermal Engineering, 2016, 107: 804-817.
|
9 |
CHEN C L , HUNG P S . Multicriteria synthesis of flexible heat-exchanger networks with uncertain source-stream temperatures[J]. Chemical Engineering & Processing Process Intensification, 2005, 44(1): 89-100.
|
10 |
LÓPEZ-MALDONADO L A , PONCE-ORTEGA J M , SEGOVIA-HERNÁNDEZ J G . Multiobjective synthesis of heat exchanger networks minimizing the cost and the environmental impact[J]. Applied Thermal Engineering, 2011, 31(6/7): 1099-1113.
|
11 |
AGARWAL A , GUPTA S K . Multiobjective optimal design of heat exchanger networks using new adaptations of the elitist nondominated sorting genetic algorithm, NSGA- [J]. Industrial & Engineering Chemistry Research, 2008, 47(10): 3489-3501.
|
12 |
KANG L , LIU Y , LIANG X . Multi-objective optimization of heat exchanger networks based on analysis of minimum temperature difference and accumulated CO2 emissions[J]. Applied Thermal Engineering, 2015, 87: 736-748.
|
13 |
尹洪超, 袁一, 王晓云, 等 . 换热网络非等温混合多目标同步最优综合[J]. 大连理工大学学报, 1995(5): 639-643.
|
|
YIN H C , YUAN Y , WANG X Y , et al . Multi-target simultaneous optimization for non-isothermal mixing heat exchanger network synthesis[J]. Journal of Dalian University of Technology, 1995(5): 639-643.
|
14 |
尹清华, 王文劲, 华贲, 等 . 采用双(多)壳程换热器来促进换热网络的进一步优化[J]. 化工进展, 1999, 18(2): 5-7.
|
|
YIN Q H , WANG W J , HUA B , et al . Promoting the optimization of heat exchanger network in process industries in using multiple-shell heat exchanger[J]. Chemical Industry and Engineering Progress, 1999, 18(2): 5-7.
|
15 |
尹清华, 王文劲, 华贲, 等 . 双(多)壳程换热器有利于工艺过程节能[J]. 石油炼制与化工, 1999(2): 34-37.
|
|
YIN Q H , WANG W J , HUA B , et al . Using double /multiple shell heat exchanger for energy conservation in process industries[J]. Petroleum Processing and Petrochemicals, 1999(2): 34-37.
|
16 |
SUN L , LUO X . Synthesis of multipass heat exchanger networks based on pinch technology[J]. Computers & Chemical Engineering, 2011, 35(7): 1257-1264.
|
17 |
LI S J , YAO P J . Synthesis of heat exchanger network considering multipass exchangers[J]. Chinese Journal of Chemical Engineering, 2001, 9(3): 242-246.
|
18 |
GALLI M R , CERDA J . Synthesis of heat exchanger networks featuring a minimum number of constrained-size shells of 1-2 type[J]. Applied Thermal Engineering, 2000, 20(15): 1443-1467.
|
19 |
李绍军, 修乃云, 姚平经 . 基于壳程数最小年度化费用换热网络综合的研究[J]. 大连理工大学学报, 2000, 40(1): 49-53.
|
|
LI S J , XIU N Y, YAO P J . Study on synthesis of minimizing annual cost heat exchanger network on the basis of shells’number[J]. Journal of Dalian University of Technology, 2000, 40(1): 49-53.
|
20 |
PONCE-ORTEGA J M , SERNA-GONZÁLEZ M , JIMÉNEZ-GUTIÉRREZ A . Synthesis of multipass heat exchanger networks using genetic algorithms[J]. Computers & Chemical Engineering, 2008, 32(10): 2320-2332.
|
21 |
赵野, 孙琳, 罗雄麟 . 多程换热网络综合与夹点技术研究进展[J]. 化工进展, 2012, 31(8): 1685-1689.
|
|
ZHAO Y , SUN L , LUO X L . Research advances in pinch technology and the synthesis of multipass heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2012, 31(8): 1685-1689.
|
22 |
RAVAGNANI M A S S , SILVA A P , ARROYO P A , et al . Heat exchanger network synthesis and optimisation using genetic algorithm[J]. Applied Thermal Engineering, 2005, 25(7): 1003-1017.
|
23 |
孙琳, 赵野, 罗雄麟 . 基于夹点技术与超结构模型的多程换热网络最优综合[J]. 化工学报, 2014, 65(3): 967-975.
|
|
SUN L , ZHAO Y , LUO X L . Synthesis of multi-pass heat exchanger network based on pinch technology and superstructure model[J]. Journal of Chemical Industry and Engineering(China), 2014, 65(3): 967-975.
|
24 |
ALLEN B , SAVARD-GOGUEN M , GOSSELIN L . Optimizing heat exchanger networks with genetic algorithms for designing each heat exchanger including condensers[J]. Applied Thermal Engineering, 2009, 29(16): 3437-3444.
|
25 |
LAUKKANEN T , TVEIT T M , OJALEHTO V , et al . An interactive multi-objective approach to heat exchanger network synthesis[J]. Computers & Chemical Engineering, 2010, 34(6): 943-952.
|
26 |
IPCC 2006. IPCC guidelines for national greenhouse gas inventories[EB/OL]. [2008-07-12]. .
|
27 |
SMITH R . Chemical process: design and integration[M]. Chichester: John Wiley & Sons Ltd., 2005.
|
28 |
AHMAD S , SMITH R . Targets and design for minimum number of shells in heat exchanger networks[J]. Chemical Engineering Research & Design, 1989, 67(5): 481-494.
|
29 |
GULYANI B B , KHANAM S , MOHANTY B . A new approach for shell targeting of a heat exchanger network[J]. Computers & Chemical Engineering, 2009, 33(9): 1460-1467.
|
30 |
吕俊锋, 肖武, 王开锋, 等 . 换热网络多目标综合优化算法研究进展[J]. 化工进展, 2016, 35(2): 352-357.
|
|
LÜ J F , XIAO W , WANG K F , et al . Research progress on optimization algorithms in multi-objective synthesis of heat exchanger networks[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 352-357.
|
31 |
LI G Q , LUO Y S , XIA Y , et al . Improvement on the simultaneous optimization approach for heat exchanger network synthesis[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6455-6460.
|
32 |
林露 . 基于非支配排序遗传算法的换热网络多目标优化[D]. 杭州: 浙江工业大学, 2013.
|
|
LIN L . Multiobjective optimization of heat exchanger network based on nondominated sorting genetic algorithm[D]. Hangzhou: Zhejiang University of Technology, 2013.
|
33 |
Annex 6. Additional information[EB/OL]. [2012-04]. .
|
34 |
BRIONES V , KOKOSSIS A C . Hypertargets: a conceptual programming approach for the optimisation of industrial heat exchanger networks-Ⅰ. Grassroots design and network complexity[J]. Chemical Engineering Science, 1999, 54(4): 519-539.
|