化工进展 ›› 2019, Vol. 38 ›› Issue (01): 155-170.DOI: 10.16085/j.issn.1000-6613.2018-1227
张晨曦(),蔡达理,贾瞾,崔宇,王垚,罗国华,骞伟中,魏飞()
收稿日期:
2018-06-12
修回日期:
2018-08-19
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
魏飞
作者简介:
张晨曦(1991—),男,助理研究员,研究方向为气固流态化。E-mail:<email>zhangcx2018@mail.tsinghua.edu.cn</email>。|魏飞,教授,博士生导师,研究方向为气固流态化与纳米材料。E-mail:<email>wf-dce@mail. tsinghua.edu.cn</email>。
基金资助:
Chenxi ZHANG(),Dali CAI,Zhao JIA,Yu CUI,Yao WANG,Guohua LUO,Weizhong QIAN,Fei WEI()
Received:
2018-06-12
Revised:
2018-08-19
Online:
2019-01-05
Published:
2019-01-05
Contact:
Fei WEI
摘要:
流化床因其均匀且剧烈的气固相互作用保证了其优异的流动和传递性能,因而广泛应用于化学工业中。因此,构建定量计算气固均匀分布的失稳临界点既是重要的学术问题又具有工程意义。本文分别使用气相和固体颗粒相的质量分数表示气固分布状态;引入颗粒床层压力载荷(Φ T)描述分布器输入的规则负熵和固体颗粒床层自身混沌熵产生之间相互作用;由于密相颗粒床层远离平衡态且具有强非线性耗散项,因此需基于普利高津最小超量熵增原理给出气固密相流在并联系统均布状态的失稳临界点(Φ Tc):分布器和固体颗粒床层总熵增在气固均布和气固非均布情况下相等;由于并联系统的对称性,可将N单元路径并联系统气固均布稳定性分析简化为判断单元路径压降二阶导数正负;在此基础上讨论了操作参数、固体颗粒性质和分布器结构参数对气固密相床层均布稳定性的影响。此外,通过气体示踪和压力脉动频谱分析在直径为300mm冷模实验验证了颗粒床层压力载荷(Φ T)对密相气固均布稳定性的影响;同时应用该方法论计算了工业流化床反应器临界床层高度、临界表观气速以及分布器临界阻力系数,指导了操作工况的调整和分布器结构设计,对比分析了改造前后的反应情况。
中图分类号:
张晨曦, 蔡达理, 贾瞾, 崔宇, 王垚, 罗国华, 骞伟中, 魏飞. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(01): 155-170.
Chenxi ZHANG, Dali CAI, Zhao JIA, Yu CUI, Yao WANG, Guohua LUO, Weizhong QIAN, Fei WEI. Non-uniform gas solids distribution in fluidized beds[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 155-170.
N=路径数目 | 2N+1=未知量 | N+1=约束方程 | N=自由度 |
---|---|---|---|
2 | 5 | 3 | 2 |
3 | 7 | 4 | 3 |
4 | 9 | 5 | 4 |
6 | 13 | 7 | 6 |
8 | 17 | 9 | 8 |
12 | 25 | 13 | 12 |
表1 气固稀相流过N并联路径的自由度分析
N=路径数目 | 2N+1=未知量 | N+1=约束方程 | N=自由度 |
---|---|---|---|
2 | 5 | 3 | 2 |
3 | 7 | 4 | 3 |
4 | 9 | 5 | 4 |
6 | 13 | 7 | 6 |
8 | 17 | 9 | 8 |
12 | 25 | 13 | 12 |
参数 | 数值 |
---|---|
气体 | |
类型 | 空气 |
密度/kg·m-3 | 1.225 |
黏度/kg·ms-1 | 1.79×10-5 |
固体颗粒 | |
类型 | B类颗粒 |
密度/kg·m-3 | 2600 |
平均粒径/μm | 300 |
颗粒装填量/kg | 10 |
表2 稳定性分析的计算参数[13,34] (20oC和101.3kPa)
参数 | 数值 |
---|---|
气体 | |
类型 | 空气 |
密度/kg·m-3 | 1.225 |
黏度/kg·ms-1 | 1.79×10-5 |
固体颗粒 | |
类型 | B类颗粒 |
密度/kg·m-3 | 2600 |
平均粒径/μm | 300 |
颗粒装填量/kg | 10 |
操作参数 | 案例A | 案例B |
---|---|---|
原料组成 | PCT∶NH3∶Air | PCT∶NH3∶Air |
反应器直径D/m | 1.2 | 1.2 |
催化剂装填量/kg | 7000 | 4650 |
静床高H/m | 7.29 | 4.84 |
高径比H/D | 约6 | 约4 |
反应温度/K | 483 | 483 |
操作压力/kPa | 101.3 | 101.3 |
表观气速U g/m·s-1 | 0.3 | 0.3 |
表3 氨氧化流化床反应器案例A和案例B的操作参数
操作参数 | 案例A | 案例B |
---|---|---|
原料组成 | PCT∶NH3∶Air | PCT∶NH3∶Air |
反应器直径D/m | 1.2 | 1.2 |
催化剂装填量/kg | 7000 | 4650 |
静床高H/m | 7.29 | 4.84 |
高径比H/D | 约6 | 约4 |
反应温度/K | 483 | 483 |
操作压力/kPa | 101.3 | 101.3 |
表观气速U g/m·s-1 | 0.3 | 0.3 |
操作参数 | 数值 |
---|---|
进料 | ONT∶H2 |
操作温度/K | 523 |
操作压力/kPa | 121.3 |
反应器直径D/m | 2.2 |
催化剂装填量/kg | 8500 |
静床高H/m | 约3 |
催化剂平均粒径d p/μm | 120 |
催化剂堆密度/kg·m-3 | 750 |
表观气速U g/m·s-1 | 0.10,0.15,0.20,0.25 |
表4 邻硝基甲苯(ONT)加氢流化床反应器的操作条件
操作参数 | 数值 |
---|---|
进料 | ONT∶H2 |
操作温度/K | 523 |
操作压力/kPa | 121.3 |
反应器直径D/m | 2.2 |
催化剂装填量/kg | 8500 |
静床高H/m | 约3 |
催化剂平均粒径d p/μm | 120 |
催化剂堆密度/kg·m-3 | 750 |
表观气速U g/m·s-1 | 0.10,0.15,0.20,0.25 |
操作参数 | 数值 |
---|---|
进料 | IPN∶Cl2∶N2 |
操作温度/K | 573 |
操作压力/kPa | 101.3 |
催化剂装填量/kg | 2400 |
催化剂平均粒径d p/μm | 120 |
催化剂平均堆密度/kg·m-3 | 500 |
表观气速U g /m·s-1 | 0.1 |
分布器阻力系数/C d | 25000,55000,75000 |
表5 间苯二甲腈(IPN)氯化流化床反应器操作参数
操作参数 | 数值 |
---|---|
进料 | IPN∶Cl2∶N2 |
操作温度/K | 573 |
操作压力/kPa | 101.3 |
催化剂装填量/kg | 2400 |
催化剂平均粒径d p/μm | 120 |
催化剂平均堆密度/kg·m-3 | 500 |
表观气速U g /m·s-1 | 0.1 |
分布器阻力系数/C d | 25000,55000,75000 |
1 | KUNII D , LEVENSPIEL O . Fluidization engineering[M]. New York: Wiley, 1969. |
2 | BI H T , ELLIS N , GRACE J R . A state-of-art review of gas-solid turbulent fluidization[J]. Chem. Eng. Sci., 2000, 55: 4789-4825. |
3 | ZHOU Z Y , YU A B , ZULLI P . Particle scale study of heat transfer in packed and bubbling fluidized beds[J]. AIChE J., 2009, 55: 868-884. |
4 | SOBRINO C , ELLIS N , VEGA M . Distributor effects near the bottom region of turbulent fluidized beds[J]. Powder Tech., 2009, 189: 25-33. |
5 | AGARWAL G , LATTIMER B , EKKAD S , et al . Experimental study on solid circulation in a multiple jet fluidized bed[J]. AIChE J., 2012, 58: 3003-3015. |
6 | ARGENTINA M , CLERC M G , SOTO R . Van der Waals–like transition in fluidized granular matter[J]. Phys. Rev. Lett., 2002, 89: 044301. |
7 | GLASSER B J , SUNDARESAN S , KEVREKIDIS I G . From bubbles to clusters in fluidized beds[J]. Phys. Rev. Lett., 1998, 81: 1849-1852. |
8 | NAMARA S M , YOUNG W R . Inelastic collapse in two dimensions[J]. Phys. Rev. E, 1994, 50: 50-67. |
9 | ZHANG C X , QIAN W Z , WEI F . Uniform bubble growth in fluidized bed and its stability analysis[C]// The 12th International Conference on Fluidized Bed Technology, Kraków, Poland, 2017. |
10 | QURESHI A E , CREASY D E . Fluidised bed gas distributors[J]. Powder Tech., 1979, 22: 113-119. |
11 | GELDART D , BAYERNS J . The design of distributors for gas fluidized beds[J]. Powder Tech., 1985, 42: 67-78. |
12 | SATHIYAMOORTHY D , HORIO M . On the influence of aspect ratio and distributor in gas fluidized beds[J]. Chem. Eng. J., 2003, 93: 151-161. |
13 | THORPE R B , DAVIDSON J F , POLLITT M , et al . Maldistribution in fluidized beds[J]. Ind. Eng. Chem. Res., 2002, 41: 5878-5889. |
14 | DU B , WARSITO W , FAN L S . Bed nonhomogeneity in turbulent gas-solid fluidization[J]. AIChE J., 2003, 49: 1109-1126. |
15 | DEPYPERE F , PIETERS J G , DEWETTINCK K . CFD analysis of air distribution in fluidized bed equipment[J]. Powder Tech., 2004, 145: 176-189. |
16 | COCCO R , ISSANGYA A , KARRI S B R , et al . Understanding streaming flow in deep fluidized beds[C]// AIChE Annual Meeting: Particle Technology Forum. Reno, USA, 2001. |
17 | DONG S Q , CAO C Q , SHI C D , et al . Effect of perforated ratios of distributor on the fluidization characteristics in a gas-solid fluidized bed[J]. Ind. Eng. Chem. Res., 2009, 48: 517- 527. |
18 | SÁNCHEZ-PRIETO J , SORIA-VERDUGO A , GÓMEZ-HERNÁNDEZ J , et al . Maldistribution detection in bubbling fluidized beds[J]. Chem. Eng. J., 2015, 270: 272-281. |
19 | SÁNCHEZ-PRIETO J , SORIA-VERDUGO A , GÓMEZ-HERNÁNDEZ J , et al . Stagnant regions estimation in fluidized beds from bed surface observation[J]. Chem. Eng. J., 2015, 281: 109-118. |
20 | GUO Q J , WERTHER J , AUE-KLETT C , et al . Flow maldistribution at bubble cap distributor in a plant-scale circulating fluidized bed riser[J]. AIChE J., 2005, 51: 1359-1366. |
21 | SIEGEL R . Effect of distributor plate-to-bed resistance ratio on onset of fluidized-bed channeling[J]. AIChE J., 1976, 22: 590-592. |
22 | ELNASHAIE S S E H , GRACE J R . Complexity, bifurcation and chaos in natural and man-made lumped and distributed systems[J]. Chem. Eng. Sci., 2007, 62(13): 3295-3325. |
23 | GRACE J R , CUI H , ELNASHAIE S S E H . Non-uniform distribution of two-phase flows through parallel identical paths[J]. Can.J. Chem. Eng., 2007, 85: 662-668. |
24 | MASNADI M S , GRACE J R , BI X , et al . Distribution of multi-phase gas-solid flow across identical parallel cyclones[J]. Sep. Purif. Technol., 2010, 72: 48-55. |
25 | MASNADI M S , ELYASI S , GRACE J R , et al . Gas-solid flow distribution through identical vertical passages: modeling and stability analysis[J]. AIChE J., 2010, 56: 2039 -2051. |
26 | DING Y L , ANDERSON R , ZHANG L F , et al . Simulations of two-phase flow distribution in communicating parallel channels for a PEM fuel cell[J]. Int. J. Multiphase Flow, 2013, 52: 35-45. |
27 | ZHANG C X , QIAN W Z , WEI F . Direct Lyapunov method to analysis mal-distribution of gas solids flow through parallines[C]// The 8th Sino-US Joint Conference of Chemical Engineering, Shanghai, China, 2015. |
28 | ZHANG C X , WANG Q Z , JIA Z , et al . Design of parallel cyclones based on stability analysis[J]. AIChE J. 2016, 62: 4251-4258. |
29 | GELDART D . Expansion of gas fluidized beds[J]. Int. Eng. Chem. Res., 2004, 43: 5802-5809. |
30 | RICHARDSON J F , ZAKI W N . Sedimentation and fluidization[J]. Trans. Inst. Chem. Eng., 1954, 32: 35-45. |
31 | FINNEMORE E J , FRANZINI J B . Fluid mechanics with engineering applications[M]. Boston: McGraw-Hill Companies Inc., 2002. |
32 | GLANSDORFF P , PRIGOGINE I . Thermodynamic theory of structure, stability and fluctuations[M]. London: Wiley, 1971. |
33 | PRIGOGINE I . Introduction to thermodynamics of irreversible processes[M]. 3rd ed. New York: Interscience, a Division of John Wiley & Sons, 1967. |
34 | ZHANG C X , QIAN W Z , WEI F . Instability analysis of uniform fluidization[J]. Chem. Eng. Sci., 2017, 173: 187-195. |
35 | THOMAS G B , WEIR M D , HASS J R . Thomas' calculus[M]. Boston: Addison-Wesley, 2003. |
36 | MERKIN D R . Introduction to the theory of stability[M]. New York: Springer, 1997: 25-75. |
37 | KARIMIPOUR S , PUGSLEY T . Study of gas streaming in a deep fluidized bed containing Geldart’s Group A particles[J]. Chem. Eng. Sci., 2010, 65: 3508-3517. |
38 | SATHIYAMOORTHY D , HORIO M . On the influence of aspect ratio and distributor in gas fluidized beds[J]. Chem. Eng. J., 2003, 93: 151-161. |
39 | SIERRA C , BONNIOL F , OCCELLI R , et al . Practical scaling considerations for dense gas fluidized beds interacting with the air-supply system[J]. Chem. Eng. Sci., 2009, 64: 3717-3720. |
40 | BONNIOL F , SIERRA C , OCCELLI R , et al . Similarity in dense gas-solid fluidized bed, influence of the distributor and the air-plenum[J]. Powder. Tech., 2009, 189: 14-24. |
41 | RAMIREZ E , FINNEY C E A , PANNALA S , et al . Computatinal study of the bubbling-to-slugging transition in a laboratory-scale fluidized bed[J]. Chem. Eng. J., 2017, 308: 544-556. |
42 | WANG JW , VAN DER HOEF M A , KUIPERS J A M . Coexistence of solidlike and fluidlike states in a deep gas-fluidized bed[J]. Ind. Eng. Chem. Res., 2010, 49: 5279-5287. |
43 | WELLS J . Streaming flow in large scale fluidization[C]//AIChE Annual Meeting Particle Technology Forum, Reno, USA, 2001. |
44 | KARIMIPOUR S , PUGSLEY T . Experimental study of the nature of gas streaming in deep fluidized beds of Geldart A particles[J]. Chem.Eng.J. 2010, 162: 388-395. |
45 | GAO Y J , MUZZIO F J , IERAPETRITOU M G . A review of the residence time distribution (RTD) application in solid unit operations[J]. Powder Tech. 2012, 228: 416-423. |
46 | LEE G S , KIM D S . Gas mixing in slugging and turbulent fluidized beds[J]. Chem. Eng. Comm., 1989, 86: 91. |
47 | DU B , FAN LS , WEI F , et al . Gas and solids mixing in a turbulent fluidized bed[J]. AIChE J., 2002, 48: 1896-1909. |
48 | LIU Y J , LAN X Y , XU C M , et al . CFD simulation of gas and solids mixing in FCC strippers[J]. AIChE J. 2012; 58: 1119-1132. |
49 | LI T W , ZHANG Y M , GRACE J R , et al . Numerical investigation of gas mixing in gas-solid fluidized beds[J]. AIChE J. 2010, 56:2280-2296. |
50 | FAN L T , HO T C , HIRAOKA S , et al . Pressure fluctuations in a fluidized bed[J]. AIChE J., 1981, 27: 388-396. |
51 | ZHAO G B , YANG Y R . Multiscale resolution of fluidized bed pressure fluctuation[J]. AIChE J., 2003, 49: 869-882. |
52 | BI H T . A critical review of the complex pressure fluctuation phenomenon in gas-solids fluidized beds[J]. Chem. Eng. Sci., 2007, 62: 3473-3493. |
53 | LUNGU M , WANG H T , WANG J D , et al . Two-fluid model simulations of the national energy technology laboratory bubbling fluidized bed challenge problem[J]. Ind. Eng. Chem. Res., 2016, 55: 5063-5077. |
54 | ZHANG C X , LI P L , LEI C , et al . Experimental study of non-uniform bubble growth in deep fluidized beds[J]. Chem. Eng. Sci., 2017. . |
55 | JIA Z , ZHANG C X , QIAN W Z , et al . Research and simulation of fast, strong exothermic reaction in gas-solid fluidized bed about temperature distribution[C]// Fluidization XV, Quebec, Canada, 2016. |
56 | ZHANG C X , QIAN W Z , WEI F . Non-uniform gas solids distribution and its effect on performance of fluidized bed reactors[C]// The 253th ACS national Meeting, San Francisco, USA, 2017. |
57 | LI J , KUIPERS J A M . On the origin of heterogeneous structure in dense gas-solid flows[J]. Chem. Eng. Sci., 2015, 60: 1251-1265. |
58 | ZHANG C X , QIAN W Z , WEI F . Phase separation of gas solids fluidization[C]// The 7th Asian Particle Technology, TaiBei, China, 2017. |
59 | PAIK K . Search for the optimality signature of river network development[J]. Phys. Rev. E, 2012, 86: 046110. |
60 | MURAMATSU M , IRIE T . Jamming transition in pedestrian conter flow[J]. Physica. A, 1999, 267: 487-498. |
61 | HELBING D . Traffic and related self-driven many-particle systems[J]. Rev. Mod. Phy., 2001, 73: 1067-1141. |
62 | HELBING D , FARKAS I J , VICSEK T . Simulating dynamical features of escape panic[J]. Nature, 2000, 407: 487-490. |
63 | HELBING D , FARKAS I J , VICSEK T . Freezing by heating in a driven mesoscopic system[J]. Phys. Rev. Lett., 2000, 84(6): 1240-1243. |
[1] | 李春利, 韩晓光, 刘加朋, 王亚涛, 王晨希, 王洪海, 彭胜. 填料塔液体分布器的研究进展[J]. 化工进展, 2023, 42(9): 4479-4495. |
[2] | 李飞, 陈海杰, 孙宗康, 谷小兵, 白玉勇, 高飞, 杨林军. 热风分布器结构对脱硫废水旋转喷雾蒸发特性影响的数值模拟[J]. 化工进展, 2020, 39(S2): 385-392. |
[3] | 何庆生, 范景福, 张建成. 气升式环流生物反应器微孔气体分布器结构优化与性能[J]. 化工进展, 2020, 39(S1): 64-68. |
[4] | 唐建峰, 崔健, 修云飞, 杨文刚, 金新明, 张伟明. 海上天然气脱酸塔内排管式液体分布器各喷淋密度下的孔径研究[J]. 化工进展, 2017, 36(04): 1192-1201. |
[5] | 韩发年, 闫志勇. SCR烟气脱硝工艺喷氨混合装置研究进展[J]. 化工进展, 2015, 34(12): 4151-4157. |
[6] | 于洪锋1,李鑫钢1,2,李 洪1,2. 孔盘式液体分布器内液体流动对布液孔出流均匀性的影响[J]. 化工进展, 2013, 32(02): 276-282. |
[7] | 黄翔峰,程 航,陆丽君,刘 佳. 利用稳定性分析仪研究化学破乳过程 [J]. 化工进展, 2010, 29(5): 825-. |
[8] | 刘有智,罗文浩,尚海茹,王其仓. 微孔膜气体分布器气液传质比表面积的研究 [J]. 化工进展, 2009, 28(9): 1536-. |
[9] | 苏红军,唐中山,徐世艾. 新型气体分布器对非牛顿流体中氧传质的影响 [J]. 化工进展, 2008, 27(5): 777-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |