[1] LIU X,ZHANG Y,HAN W,et al.Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438):459-462.
[2] 中华人民共和国环境保护部. 2016中国环境状况公报[R].北京:中华人民共和国环境保护部, 2017. Ministry of Environmental Protection of the People's Republic of China. 2016 Report on the state of China's environment[R]. Beijing:Ministry of Environmental Protection of the People's Republic of China, 2017.
[3] WANG J, LU H, CHEN G H, et al. A novel sulfate reduction, autotrophic denitrification, nitrification integrated(SANI) process for saline wastewater treatment[J]. Water Research, 2009, 43(9):2363-2372.
[4] CHEN H H, LIU S T, YANG F L, et al. The development of simultaneous partial nitrification, ANAMMOX and denitrification (SNAD) process in a single reactor for nitrogen removal[J]. Bioresource Technology, 2008, 100(4):1548-1554.
[5] WAN D J, LIU H J, QU J H, et al. Using the combined bioelectrochemical and sulfur autotrophic denitrification system for groundwater denitrification[J]. Bioresource Technology, 2008, 100(1):142-148.
[6] ASLAN S, DAHAB M. Nitritation and denitritaion of ammonium-rich wastewater using fluidized-bed biofilm reactors[J]. Journal of Hazardous Materials, 2008, 156(1/2/3):56-63.
[7] HYNES M J. The effect of lack of a carbon source on nitrate-reductase activity in Aspergillus nidulans[J]. Journal of General Microbiology, 1973, 79:155-157.
[8] NYBERG U, ASPERGREN H, ANDERSSON B, et al. Full-scale application of nitrogen removal with methanol as carbon source[J]. Water Science and Technology, 1992, 26(5/6):1077-1086.
[9] LEE S, KOOPMAN B, PARK S, et al. Effect of fermented wastes on denitrification in activated sludge[J]. Water Environment Research, 1995, 67(7):1119-1122.
[10] CHRISTENSSON M,LIE E,WELANDER T.A comparison between ethanol and methanol as carbon sources for denitrification[J]. Water Science and Technology, 1994, 30(6):83-90.
[11] YUAN H Y, CHEN Y G, ZHANG H X, et al. Improved bioproduction of short-chain fatty acids(SCFAs) from excess sludge under alkaline conditions[J]. Environmental Science and Technology, 2006, 40(6):2025-2029.
[12] CHEN Y G,JIANG S,YUAN H Y,et al.Hydrolysis and acidification of waste activated sludge at different pHs[J]. Water Research, 2006, 41(3):683-689.
[13] FIELD J A, CERVANTES F J. Microbial redox reactions mediated by humus and structurally related quinones[M]//Use of humic substances to remediate polluted environments:from theory to practice(NATO science series). Netherlands:Springer, 2005, 52:343-352.
[14] COATES J D, COLE K A, CHAKRABORTY R, et al. Diversity and ubiquity of bacteria capable of utilizing humic substances as electron donors for anaerobic respiration[J]. American Society for Microbiology, 2002, 68(5):2445-2452.
[15] 苑宏英,孙锦绣,王小佩,等.投加介体强化低温污水生物反硝化脱氮的研究[J].环境科学与技术, 2016, 39(11):90-94. YUAN H Y, SUN J X, WANG X P, et al. Study on performance of sewage biological denitrification at low temperature adding redox mediator[J]. Environmental Science and Technology, 2016, 39(11):90-94.
[16] ELEFSINIOTIS P, WAREHAM D G. Utilization patterns of volatile fatty acids in the denitrification reaction[J]. Enzyme and Microbial Technology, 2007, 41(2):92-97.
[17] ELEFSINIOTIS P, LI D. The effect of temperature and carbon source on denitrification using volatile fatty acids[J]. Biochemical Engineering Journal, 2006, 28(2):148-155.
[18] LOUZEIRO N R, MAVINIC D S, OLDHAM W K, et al. Methanol-induced biological nutrient removal kinetics in a full-scale sequencing batch reactor[J]. Water Research, 2002, 36(11):2721-2732.
[19] HER J J, HUANG J S. Influences of carbon source and C/N ratio on nitrate/nitrite denitrification and carbon breakthrough[J]. Bioresource Technology, 1995, 54(1):45-51.
[20] GE S J, PENG Y Z, WANG S Y, et al. Nitrite accumulation under constant temperature in anoxic denitrification process:the effects of carbon source and COD/NO3-N[J]. Bioresource Technology, 2012, 114(3):137-143.
[21] OSAKA T, SHIROTANI K, YOSHIE S, et al. Effects of carbon source on denitrification efficiency and microbial community structure in a saline wastewater treatment process[J].Water Research, 2008, 42(14):3709-3718.
[22] 殷芳芳,王淑莹,昂雪野,等.碳源类型对低温条件下生物反硝化的影响[J].环境科学, 2009, 30(1):108-113. YIN F F, WANG S Y, ANG X Y, et al. Effects of carbon source types on denitrification performance at low temperature[J]. Environmental Science, 2009, 30(1):108-113.
[23] NELSON D L, COX M M. Lehninger生物化学原理[M]. 周海梦, 昌增益,译. 3版.北京:高等教育出版社, 2005:485-521. NELSON D L, COX M M. Lehninger principles of biochemistry[M]. ZHOU H M, CHANG Z Y, trans. 3nd ed. Beijing:Higher Education Press, 2005:485-521.
[24] 张仲玲.反硝化脱氮外加碳源的选择[D].深圳:哈尔滨工业大学深圳研究生院, 2009. ZHANG Z L. Selection of external carbon sources for denitrification[D]. Shenzhen:Harbin Institute of Technology Shenzhen Graduate School, 2009.
[25] KOCH F A, OLDHAM W K. Oxidation-reduction potential——a tool for monitoring, control and optimization of biological nutrient removal systems[J]. Water Science and Technology, 1985, 17:259-281.
[26] LEE P G, LEA R N, DOHMANN E, et al. Denitrification in aquaculture systems:an example of a fuzzy logic control problem[J]. Aquacultural Engineering, 2000, 23(1):37-59. |