[1] 石鹏,艾晗,王辉. 抗生素制药菌渣的处理处置技术进展与分析[J]. 中国抗生素杂志,2015,40(7):486-494. SHI P,AI H,WANG H. Progress and analysis of antibiotics bacterial residue disposal[J]. Chinese Journal of Antibiotics,2015,40(7):486-494.
[2] 王攀,于宏兵,薛旭方. 废弃植物中药渣的热解特性及动力学研究[J]. 环境工程学报,2010,4(9):2115-2119. WANG P,YU H B,XUE X F. Study on characteristics and kinetics of pyrolysis of herb residue[J]. Chinese Journal of Environmental Engineering,2010,4(9):2115-2119.
[3] 杨帅,张兆玲,孟剑峰,等. 循环流化床中菌渣热解气化特性的研究[J]. 高校化学工程学报,2015,29(4):997-1002. YANG S,ZHANG Z L,MENG J F,et al. Study on pyrolysis gasification of fungus residues in circulating fluidized beds[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(4):997-1002.
[4] BAER D R,ENGELH M H. XPS analysis of nanostructured materials and biological surfaces[J]. Journal of Electron Spectroscopy and Related Phenomena,2010,178:415-432.
[5] 张红娟. 抗生素菌渣堆肥化处理研究[D]. 郑州:郑州大学,2010. ZHANG H J. Research of the composting treatment of antibiotic mushroom dregs[J]. Zhengzhou:Zhengzhou University,2010.
[6] Demirbas A. Competitive liquid biofuels from biomass[J]. Applied Energy,2011,88:17-28.
[7] 程晓晗,何选明,柴军,等. 石莼与褐煤低温共热解产物的特性[J]. 化工进展,2016,35(1):105-109. CHENG X H,HE X M,CHAI J, et al. Characteristics of low-temperature co-pyrolysis products of ulva and lignite[J]. Chemical Industry and Engineering Progress,2016,35(1):105-109.
[8] 郭斌,贡丽鹏,刘仁平. 土霉素菌渣的热解特性及动力学研究[J]. 太阳能学报,2013,34(9):1504-1508. GUO B,GONG L P,LIU R P. Study on pyrolysis characteristics and kinetics of terramycin bacterial residue[J]. Acta Energiae Solaris Sinica,2010,4(9):2115-2119.
[9] YU J,ZENG X,ZHANG G Y,et al. Kinetics and mechanism of direct reaction between CO2 and Ca(OH)2 in micro fluidized bed[J]. Environmental Science & Technology,2013,47:7514-7520.
[10] 焦永刚,马长捷,李敏霞. 热解法处理抗生素发酵残渣的研究初探[J]. 工业安全与环保,2011,37(5):36-37. JIAO Y G,MA C J,LI M X. The study of antibiotic fermentation residue treatment by pyrolysis[J]. Industrial Safety and Environmental Protection,2011,37(5):36-37.
[11] WHITE J E,CATALLO W J,LEGENDRE B L. Biomass pyrolysis kinetics:a comparative critical review with relevant agricultural residue case studies[J]. Journal of Analytical and Applied Pyrolysis, 2011,91:1-33.
[12] 王传格,曾凡桂. 神东煤镜质组和惰质组热解甲烷生成反应类型分析[J]. 太原理工大学学报,2011,42(3):241-247. WANG C G,ZENG F G. Analysis of methane generation reaction types during pyrolysis of vitrinite and inertinite of shendong coal[J]. Journal of Taiyuan University of Technology,2011,42(3):241-247.
[13] GAI C,DONG Y P,FAN P F,et al. Kinetic study on thermal decomposition of toluene in a micro fluidized bed reactor[J]. Energy Conversion and Management,2015,106:721-727.
[14] 张丽. 落下床反应器中煤与生物制共热解研究[D]. 大连:大连理工大学,2006. ZHANG L. Research on co-pyrolysis of biomass and coal in a free fall reactor[J]. Dalian:Dalian University of Technology,2006.
[15] MAO Y B,DONG L,DONG Y P,et al. Fast co-pyrolysis of biomass and lignite in a micro fluidized bed reactor analyzer[J].Bioresource Technology,2015,181:155-162.
[16] 蔡连国,刘文钊,余剑,等. 煤程序升温与等温热解特性及动力学比较研究[J]. 煤炭转化,2012,35(3):6-14. CAI L G,LIU W Z,YU J,et al. Comparative study on coal pyrolysis via programmed and isothermal heating[J]. Coal Conversion,2012, 35(3):6-14.
[17] BANYASZ J.L,LI S,LYONSHART J. Gas evolution and the mechanism of cellulose pyrolysis[J]. Fuel,2001,80(12):1757-1763.
[18] YU J,ZHU J H,GUO F,et al. Reaction kinetics and mechanism of biomass pylolysis in a micro-fluidized bed reactor[J]. Journal of Fuel Chemistry and Technology,2010,38(6):666-672.
[19] 余剑,朱剑虹,岳君容,等. 微型流化床反应动力学分析仪的研制与应用[J]. 化工学报,2009,60(10):2669-2674. YU J,ZHU J H,YUE J R,et al. Development and application of micro kinetic analyzer for fluidized bed gas-solid reactions[J]. C1ESC Journal,2009,60(10):2669-2674.
[20] ALVAREZ E,MARROQUIN G,TREJO F. Pyrolysis kinetics of atmospheric residue and its SARA fractions[J]. Fuel,2011,90:3602-3607.
[21] 袁帅. 煤-生物质及其混合物的快速热解及过程中氮的迁移[D]. 上海:华东理工大学,2012. YUAN S. Rapid pyrolysis of coal,biomass,and coal/biomass blends, and nitrogen evolution during rapid pyrolysis[J]. Shanghai:East China University of Science and Technology,2012. |