[1] 章博. 枯草芽孢杆菌戊糖与半纤维素的高效利用及乙偶姻的生产[D]. 天津:天津大学,2014. ZHANG B. Utilization of pentose and hemicelluloses and production of acetoin by Bacillus subtilis[D]. Tianjin:Tianjin University,2014.
[2] LYNED D L, MURALIKRISHNA G. Purification and characterization of β-D-xylosidase from Lactobacillus brevis grown on xylo-oligosaccharides[J]. Carbohydrate Polymers, 2013, 92(2):1978-1983.
[3] TAKAAKI Y,MICHIKATSU S. Purification and characterization of an β-D-xylosidase from Candida utilis IFO 0639[J]. Bioscience Biotechnology & Biochemistry,2001,65(3):527-533.
[4] SHI H,LI X,GU H,et al. Biochemical properties of a novel thermostable and highly xylose-tolerant β-xylosidase/α-arabinosidase from Thermotoga thermarum[J]. Biotechnol Biofuels,2013,6(1):27-36.
[5] SHAO W L. Purification and characterization of a thermostable β-xylosidase from Thermoanaerobacter ethanolicus[J]. Journal of Bacteriology,1992,174(18):5848-5853.
[6] ADITYA B,KENNETH M B,RAJESH K S. Highly thermostable GH39β-xylosidase from Geobacillus sp. Strain WSUCF1[J]. BMC Biotechnol.,2014,14(1):1-10.
[7] TRUUS D V,ROBERT R B,MIRIAM A B,et al. Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana[J]. Biotechnology for Biofuels,2009,2(12):1-15.
[8] 孟冬冬,张坤迪,英瑜,等. 极端嗜热厌氧菌Caldicellulosiruptor木质纤维素降解研究[J]. 生物加工过程,2014(1):37-45. MENG D D,ZHANG K D,YING Y,et al. Research progress in lignocelluloses degradation by genus Caldicellulosiruptor[J]. Chinese Journal of Biochemisty,2014(1):37-45.
[9] BRADFORD M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,729(1/2):248-253.
[10] 刘奥梅,朱怀荣. 生物化学实验教程[M]. 北京:人民卫生出版社,1997:23-25. LIU A M,ZHU H R. Biochemistry experiment[M]. Beijing:People's Medical Publishing House,1997:23-25.
[11] CLEEMPUT G,HESSING M,VANOORT M,et al. Purification and characterization of a β-D-xylosidase and an endo-xylanase from wheat flour[J]. Plant Physiology,1997,113(2):377-386.
[12] LEE Y E,ZEIKUS J G. Genetic organization, sequence and biochemical characterization of recombinant beta-xylosidase from Thennoanaerobacterium saccharolyticum strain B6A-RI[J]. Journal of General Microbiology,1993,139(6):1235-1243.
[13] YIN X,YAO Y,WU M C,et al. Aunique disulfide bridge of the thermophilic xylanase SyXyn11 plays a key role in its thermostability[J]. Biochemistry,2014,79(6):531-537.
[14] JAEGER K E,REETZ M T. Microbial lipases form versatile tools for biotechnology[J]. Trends in Biotechnology,1998,16(9):396-403.
[15] MCPHILLIPS K,WATERS D M,PARLET C,et al. Purification and characterisation of a β-1,4-xylanase from Remersonia thermophila CBS 540.69 and its application in bread making[J]. Applied Biochemistry & Biotechnology,2014,172(4):1747-1762.
[16] ZhENG H. Isolation, purification, and characterization of a thermostable xylanase from a novel strain, Paenibacillus campinasensis G1-1[J]. Journal of Microbiology & Biotechnology, 2012,22(7):930-938.
[17] TAE H L, PYUNG O L, YONG-EOK L. Puirification and characterization of β-xylosidase from Paenibacillus sp. DG-22[J]. Life Science Journal,2007,17(10):1341-1346.
[18] BRAVMAN T, ZOLOTNISKY G,, SHULAMI S, et al. Stereochemistry of family 52 glycosyl hydrolases:a β-xylosidase from Bacillus stearothermophilus T-6 is a retaining enzyme[J]. Febs Letters,2001,49(1-2):39-43.
[19] 江小华,朱均均,余世袁,等. 里氏木霉β-木糖苷酶的分离纯化、酶学性质及水解机理研究[J].生物质化学工程,2013,47(1):27-32. JIANG X H, ZHU J J, YU S Y, et al. Purification, characterization and hydrolysis mechanism of β-xylanase from Trichoderma reesei[J]. Biomass Chemical Engineering,2013,47(1):27-32. |