[1] Mizuno K,Izaki M,Murase K,et al. Structural and electrical characterizations of electrodeposited p-type semiconductor Cu2O films[J]. J. Electrochem. Soc.,2005,152(4):c179-c182.[2] Hara M,Kondo T,Komoda M,et al. Cu2O as a photocatalyst for overall water splitting under visible irradiation[J]. Chem. Commun.,1998,3:357-358.[3] Roos A,Chibuye T,Karlsson B. Properties of oxidized copper surfaces for solar applications[J]. Sol. Energ. Mater.,1983,7(4):467-480.[4] Ng C H B,Fan W Y. Shape evolution of Cu2O nanostructures via kinetic and thermodynamic controlled growth[J]. J. Phys. Chem. B,2006,110(42):20801-20807.[5] Kim J Y,Kwon Y W,Lee H J. Metal ion-assisted reshaping of Cu2O nanocrystals for catalytic applications[J]. J. Mater. Chem. A,2013,1(45):14183-14188.[6] Cao Y Y,Xu Y Y,Hao H Y,et al. Room temperature additive-free synthesis of uniform Cu2O nanocubes with tunable size from 20nm to 500nm and photocatalytic property[J]. Mater. Lett .,2014,114 :88-91.[7] Kwon Y W,Soon A,Hanb H,et al. Shape effects of cuprous oxide particles on stability in water and photocatalytic water splitting[J]. J. Phys. Chem. C,2015,3(1):156-162.[8] Mcshane C M,Choi K S. Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth[J]. J. Am. Chem. Soc.,2009,131(7):2561-2569.[9] Jayaramulu K,Suresh V M,Maji T K. Stabilization of Cu2O nanoparticles on a 2D metal-organic framework for catalytic huisgen 1,3-dipolar cycloaddition reaction[J]. Dalton Trans.,2015,44(1):83-86.[10] Yuhas B D,Yang P. Nanowire-based all-oxide solar cells[J]. J. Am. Chem. Soc.,2009,131(10):3756-3761.[11] Kuo C H,Chen C H,Huang M H. Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420nm[J]. Adv. Funct. Mater.,2007,17(18):3773-3780.[12] Gou L F,Murphy C J. Solution-phase synthesis of Cu2O nanocubes[J]. Nano Lett.,2003,3(2):231-234.[13] Kim M H,Lim B,Lee E P,et al. Polyol synthesis of Cu2O nanoparticles:Use of chloride to promote the formation of a cubic morphology[J]. Mater. Chem.,2008,18(34):4069-4073.[14] Huang M H,Kuo C H. Morphological controlled synthesis of Cu2O nanocrystals and their properties[J]. Nano Today,2010,5(2):106-116.[15] Chang I C,Chen P C,Lee C Y,et al. Large-scale synthesis of uniform Cu2O nanocubes with tunable sizes by in-situ nucleation[J]. Cryst. Eng. Comm.,2013,15(13):2363-2366.[16] Chen K,Xue D. pH-Assisted crystallization of Cu2O:Chemical reactions control the evolution from nanowires to polyhedra[J]. Cryst. Eng. Comm.,2012,14(23):8068-8075.[17] Nikam A V,Arulkashmir V,Prasad B L V,et al. pH-Dependent single-step rapid synthesis of CuO and Cu2O nanoparticles from the same precursor[J]. Cryst. Growth Des.,2014,14(9):4329-4334.[18] Xu H L,Wang W Z,Zhu W. Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties[J]. J. Phys. Chem. B,2006,110(28):13829-13834.[19] Siegfried M J,Choi K S. Directing the architecture of cuprous oxide crystals during electrochemical growth[J]. Angew. Chem. Int. Ed.,2005,44(21):3282-3287.[20] Kuo C H,Huang M H. Facile synthesis of Cu2O nanocrystals with systematic shape evolution from cubic to octahedral structures[J]. J. Phys. Chem. C,2008,112(47):18355-18360.[21] Huang W C,Lyu L M,Yang Y C,et al. Synthesis of Cu2O nanocrystals from cubic to rhombic dodecahedral structures and their comparative photocatalytic activity[J]. J. Am. Chem. Soc.,2012,134(2):1261-1267.[22] Susman M D,Feldman Y,Rubinstein I,et al. Chemical deposition of Cu2O nanocrystals with precise morphology control[J]. ACS Nano,2014,8(1):162-174.[23] Yao K X,Yin X M,Wang T H,et al. Synthesis,self-assembly,disassembly,and reassembly of two types of Cu2O nanocrystals unifaceted with {001} or {110} planes[J]. J. Am. Chem. Soc.,2010,132(17):6131-6144.[24] Zhang Y,Deng B,Zhang T R,et al. Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity[J]. J. Phys. Chem. C,2010,114(11):5073-5079.[25] Leng M,Liu M Z,Wang Z Q,et al. Polyhedral 50-facet Cu2O microcrystals partially enclosed by {311} high-index planes:Synthesis and enhanced catalytic CO oxidation activity[J]. J. Am. Chem. Soc.,2010,132(48):17084-17087.[26] Wang X P,Jiao S H,Wu D P,et al. A facial strategy for crystal engineering of Cu2O polyhedrons with high-index facets[J]. Cryst. Eng. Comm.,2013,15:1849-1852.[27] Chen K F,Sun C T,Xue D F,et al. Polymorphic crystallization of Cu2O compound[J]. Cryst. Eng. Comm.,2014,16(24):5257-5267.[28] Liu H R,Miao W F,Chen J F,et al. Controlled synthesis of different shapes of Cu2O via γ-irradiation[J]. Cryst. Growth Des.,2009,9(4):1733-1740.[29] Shang Y,Shao Y M,Guo L,et al. Recrystallization-induced self-assembly for the growth of Cu2O superstructures[J]. Angew. Chem. Int. Ed.,2014,53(43):11514-11518.[30] Kuo C H,Huang M H. Fabrication of truncated rhombic dodecahedral Cu2O nanocages and nanoframes by particle aggregation and acidic etching[J]. J. Am. Chem. Soc.,2008,130(38):12815-12820.[31] Tsai Y H,Chiu C Y,Huang M H. Fabrication of diverse Cu2O nanoframes through face-selective etching[J]. J. Phys. Chem. C,2013,117(46):24611-24617.[32] Sui Y M,Zeng Y,Zheng W T,et al. Synthesis of polyhedron hollow structure Cu2O and their gas-sensing properties[J]. Sens. Actuators B,2012,171-172:135-140.[33] Xu Y Y,Jiao X L,Chen D R. PEG-assisted preparation of single-crystalline Cu2O hollow nanocubes[J]. J. Phys. Chem. C,2008,112(43):16769-16773.[34] Lu G H,Qi L M,Yang J H,et al. One-pot synthesis of octahedral Cu2O nanocages via a catalytic solution route[J]. Adv. Mater.,2005,17(21):2562-2567.[35] Tan Y W,Xue X Y,Peng W,et al. Controllable fabrication and electrical performance of single crystalline Cu2O nanowires with high aspect ratios[J]. Nano Lett.,2007,7(12):3723-3728.[36] Deng S Z,Tjoa W,Fan H M,et al. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor[J]. J. Am. Chem. Soc.,2012,134(10):4905-4917.[37] Wang W Z,Wang G G,Wang X S,et al. Synthesis and characterization of Cu2O nanowires by a novel reduction route[J]. Adv. Mater.,2002,14(1):67-69.[38] Qian F,Wang G M,Li Y. Solar-driven microbial photoelectrochemical cells with a nanowire photocathode[J]. Nano Lett.,2010,10(11):4686-4691.[39] Ren Y,Ma Z,Bruce P G. Transformation of mesoporous Cu/Cu2O into porous Cu2O nanowires in ethanol[J]. Cryst. Eng. Comm.,2012,14(8):2617-2620.[40] Wu F,Myung Y,Banerjee P. Rayleigh instability driven nodular Cu2O nanowires via carbothermal reduction of CuO nanowires[J]. Cryst. Growth Des.,2015,15(4):1588-1595.[41] Zhao Y X,Wang W T,Huo Z Y,et al. Hierarchical branched Cu2O nanowires with enhanced photocatalyticactivity and stability for H2 production[J]. Nanoscale,2014,6(1):195-198.[42] Wu Y Y,Livneh T,Zhang Y Z,et al. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays[J]. Nano Lett.,2004,4(12):2337-2342.[43] Cao M H,Hu C W,Wang Y H. A controllable synthetic route to Cu,Cu2O,and CuO nanotubes and nanorods[J]. Chem. Commun.,2003,39(15):1884-1885.[44] Hacialioglu S,Mengw F,Jin S. Facile and mild solution synthesis of Cu2O nanowires and nanotubes driven by screw dislocations[J]. Chem. Commun.,2012,48(8):1174-1176.[45] Zhong J H,Li G R,Wang Z L,et al. Facile electrochemical synthesis of hexagonal Cu2O nanotube arrays and their application[J]. Inorg. Chem.,2011,50(3):757-763.[46] Guan L,Pang H,Wang J J,et al. Fabrication of novel comb-like Cu2O nanorod-based structures through an interface etching method and their application as ethanol sensors[J]. Chem. Commun.,2010,46(37):7022-7024.[47] Musselman K P,Mulholland G J,Robinson A P,et al. Low-temperature synthesis of large-area,free-standing nanorod arrays on ITO/glass and other conducting substrates[J]. Adv. Mater.,2008,20(23):4470-4475.[48] Ju H K,Lee J K,Lee G,et al. Fast and selective Cu2O nanorod growth into anodic alumina templates via electrodeposition[J]. Curr. Appl. Phys.,2012,12(1):60-63.[49] Haynes K M,Perry C M,Rivas M,et al. Templated electrodeposition and photocatalytic of cuprous oxide nanorod arrays[J]. ACS Appl. Mater. Interfaces,2015,7(1):830-837.[50] Pang H,Gao F,Lu Q Y. Glycine-assisted double-solvothermal approach for various cuprous oxide structures with good catalytic activities[J]. Cryst. Eng. Comm,2010,12(2):406-412.[51] Ho J Y,Huang M H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity[J]. J. Phys. Chem. C,2009,113(32):14159-14164. |