[1] CHU L Y,XIE R,JU X J,et al. Smart hydrogel functional materials[M]. Berlin,Heidelberg:Springer-Verlag,2013. [2] STAYTON P S,SHIMOBOJI T,LONG C,et al. Control of protein-ligand recognition using a stimuli-responsive polymer[J]. Nature,1995,378:472-474. [3] KIM Y S,LIU M J,ISHIDA Y,et al. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel[J]. Nature Materials,2015,14(10):1002-1007. [4] MOU C L,JU X J,ZHANG L,et al. Monodisperse and fast-responsive poly(N-isopropylacrylamide) microgels with open-celled porous structure[J]. Langmuir,2014,30(5):1455-1464. [5] ANGELOS S,YANG Y W,PATEL K,et al. pH-Responsive supramolecular nanovalves based on cucurbit[6] uril pseudorotaxanes[J]. Angewandte Chemie International Edition,2008,47(12):2222-2226. [6] ZHANG S Y,BELLINGER A M,GLETTIG D L,et al. pH-Responsive supramolecular polymer gel as an enteric elastomer for use in gastric devices[J]. Nature Materials,2015,14(10):1065-1071. [7] ZHANG J,XIE R,ZHANG S B,et al. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains[J]. Polymer,2009,50(11):2516-2525. [8] ZHANG J,CHU L Y,LI Y K,et al. Dual thermo- and pH-sensitive poly(N-isopropylacrylamide-co-acrylic acid) hydrogels with rapid response behaviors[J]. Polymer,2007,48(6):1718-1728. [9] MI P,JU X J,XIE R,et al. A novel stimuli-responsive hydrogel for K+-induced controlled-release [J]. Polymer,2010,51(7):1648-1653. [10] JIANG M Y,JU X J,FANG L,et al. A novel smart microsphere with K+-induced shrinking and aggregating property based on responsive host-guest system[J]. ACS Applied Materials & Interfaces,2014,6(21):19405-19415. [11] TU T,FANG W W,SUN Z M. Visual-size molecular recognition based on gels[J]. Advanced Materials,2013,25(37):5304-5313. [12] IKEDA M,TANIDA T,YOSHII T,et al. Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel-enzyme hybrids[J]. Nature Chemistry,2014,6(6):511-518. [13] SAMOEI G K,WANG W H,ESCOBEDO J O,et al. A chemomechanical polymer that functions in blood plasma with high glucose selectivity[J]. Angewandte Chemie International Edition,2006,45(32):5319-5322. [14] ZHANG S B,CHU L Y,XU D,et al. Poly(N-isopropylacrylamide)-based comb-type grafted hydrogel with rapid response to blood glucose concentration change at physiological temperature[J]. Polymers for Advanced Technologies,2008,19(8):937-943. [15] ZHANG M J,WANG W,XIE R,et al. Microfluidic fabrication of monodisperse microcapsules for glucose-response at physiological temperature[J]. Soft Matter,2013,9(16):4150-4159. [16] KLOXIN A M,KASKO A M,SALINAS C N,et al. Photodegradable hydrogels for dynamic tuning of physical and chemical properties[J]. Science,2009,324:59-63. [17] TAKASHIMA Y,HATANAKA S,OTSUBO M,et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions[J]. Nature Communications,2012,3:1270. [18] ZHANG X B,PINT C L,LEE M H,et al. Optically-and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites[J]. Nano Letters,2011,11(8):3239-3244. [19] FUSCO S,SAKAR M S,KENNEDY S,et al. An integrated microrobotic platform for on-demand,targeted therapeutic interventions[J]. Advanced Materials,2014,26(6):952-957. [20] KWON I C,BAE Y H,KIM S W. Electrically erodible polymer gel for controlled release of drugs[J]. Nature,1991,354(6351):291-293. [21] OSADA Y,OKUZAKI H,HORI H. A polymer gel with electrically driven motility[J]. Nature,1992,355(6327):242-244. [22] YANG C,WANG W,YAO C,et al. Hydrogel walkers with electro-driven motility for cargo transport[J]. Scientific Reports,2015,5:13622-13631. [23] DONG L,AGARWAL A K,BEEBE D J,et al. Adaptive liquid microlenses activated by stimuli-responsive hydrogels[J]. Nature,2006,442(7102):551-554. [24] SIDORENKO A,KRUPENKIN T,TAYLOR A,et al. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns[J]. Science,2007,315(5811):487-490. [25] MA M M,GUO L,ANDERSON D G,et al. Bio-inspired polymer composite actuator and generator driven by water gradients[J]. Science,2013,339(6116):186-189. [26] ISLAM M R,LI X,SMYTH K,et al. Polymer-based muscle expansion and contraction[J]. Angewandte Chemie International Edition,2013,52(39):10330-10333. [27] IAMSAARD S,AßHOFF S J,MATT B,et al. Conversion of light into macroscopic helical motion[J]. Nature Chemistry,2014,6(3):229-335. [28] LU X,ZHANG Z,LI H,et al. Conjugated polymer composite artificial muscle with solvent-induced anisotropic mechanical actuation[J]. Journal of Materials Chemistry A,2014,2(41):17272-17280. [29] CALVERT P. Hydrogels for soft machines [J]. Advanced Materials,2009,21(7):743-756. [30] YAO C,LIU Z,YANG C,et al. Poly(N-isopropylacrylamide)-clay nanocomposite hydrogels with responsive bending property as temperature-controlled manipulators[J]. Advanced Functional Materials,2015,25(20):2980-2991. [31] BEEBE D J,MOORE J S,BAUER J M,et al. Functional hydrogel structures for autonomous flow control inside microfluidic channels[J]. Nature,2000,404(6778):588-590. [32] ZHU C H,LU Y,PENG J,et al. Photothermally sensitive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves[J]. Advanced Functional Materials,2012,22(19):4017-4022. [33] LIN S,WANG W,JU X J,et al. A simple strategy for in situ fabrication of smart hydrogel microvalve within microchannels for thermostatic control[J]. Lab on a Chip,2014,14(15):2626-2634. [34] SELIKTAR D. Designing cell-compatible hydrogels for biomedical applications[J]. Science,2012,336(6085):1124-1128. [35] STUART M A C,HUCK W T S,GENZER J,et al. Emerging applications of stimuli-responsive polymer materials[J]. Nature Materials,2010,9(2):101-113. [36] LIU Z,LIU L,JU X J,et al. K+-recognition capsules with squirting release mechanisms[J]. Chemical Communications,2011,47(45):12283-12285. [37] LIU L,WANG W,JU X J,et al. Smart thermo-triggered squirting capsules for nanoparticle delivery[J]. Soft Matter,2010,6(16):3759-3763. [38] NAGASE K,KOBAYASHI J,OKANO T. Temperature-responsive intelligent interfaces for biomolecular separation and cell sheet engineering[J]. Journal of The Royal Society Interface,2009,6:S293-S309. [39] THOMAS P C,CIPRIANO B H,RAGHAVAN S R. Nanoparticle-crosslinked hydrogels as a class of efficient materials for separation and ionexchange[J]. Soft Matter,2011,7(18):8192-8197. [40] 刘壮,谢锐,巨晓洁,等. 具有快速响应特性的环境响应型智能水凝胶的研究进展[J]. 化工学报,2015,67(1):202-208. [41] XIA L W. Construction and performance of composite thermo-responsive hydrogels crosslinked by microgels[D]. Chengdu:Sichuan University,2013. [42] NAFICY S,BROWN H R,RAZAL J M,et al. Progress toward robust polymer hydrogels[J]. Australian Journal of Chemistry,2011,64(8):1007-1025. [43] SHI K,LIU Z,WEI Y Y,et al. Near-infrared light-responsive poly(N-isopropylacrylamide)/graphene oxide nanocomposite hydrogels with ultrahigh tensibility[J]. ACS Applied Materials & Interfaces,2015,7(49):27289-27298. [44] HARAGUCHI K,TAKEHISA T. Nanocomposite hydrogels:a unique organic-inorganic network structure with extraordinary mechanical,optical,and swelling/de-swelling properties[J]. Advanced Materials,2002,14(16):1120-1124. [45] HARAGUCHI K,TAKEHISA T,FAN S. Effects of clay content on the properties of nanocomposite hydrogels composed of poly (N-isopropylacrylamide) and clay[J]. Macromolecules,2002,35(27):10162-10171. [46] ABDURRAHMANOGLU S,CAN V,OKAY O. Equilibrium swelling behavior and elastic properties of polymer-clay nanocomposite hydrogels[J]. Journal of Applied Polymer Science,2008,109(6):3714-3724. [47] HARAGUCHI K,XU Y J,LI G. Molecular characteristics of poly(N-isopropylacrylamide) separated from nanocomposite gels by removal of clay from the polymer/clay network[J]. Macromolecular Rapid Communications,2010,31(8):718-723. [48] LIN W C,FAN W,MARCELLAN A,et al. Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels[J]. Macromolecules,2010,43(5):2554-2563 [49] KIM J,KOO J,SHIRAHASE T,et al. Preparation of organic/inorganic hybrid gel after gamma-ray radiation[J]. Chemistry Letters,2009,38(11):1112-1113. [50] LIU M,ISHIDA Y,EBINA Y,et al. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers[J]. Nature Communications,2013,4:3029. [51] BHATTACHARYYA S,GUILLOT S,DABBOUE H,et al. Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds[J]. Biomacromolecules,2008,9(2):505-509. [52] VAYSSE M,KHAN M K,SUNDARARAJAN P. Carbon nanotube reinforced porous gels of poly(methyl methacrylate) with nonsolvents as porogens[J]. Langmuir,2009,25(12):7042-7049. [53] HUANG T,XU H G,JIAO K X,et al. A novel hydrogel with high mechanical strength:a macromolecular microsphere composite hydrogel[J]. Advanced Materials,2007,19(12):1622-1626. [54] XIA L W,XIE R,JU X J,et al. Nano-structured smart hydrogels with rapid response and high elasticity[J]. Nature Communications,2013,4:2226. [55] OKUMURA Y,ITO K. The polyrotaxane gel:a topological gel by figure-of-eight cross-links[J]. Advanced Materials,2001,13(7):485-487. [56] IMRAN A B,ESAKI K,GOTOH H,et al. Extremely stretchable thermosensitive hydrogels by introducing slide-ring polyrotaxane cross-linkers and ionic groups into the polymer network[J]. Nature Communications,2014,5:5124. DOI:10.1038/ncomms6124. [57] GONG J P,KATSUYAMA Y,KUROKAWA T,et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials,15(14):1155-1158. [58] SUN T L,KUROKAWA T,KURODA S,et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity[J]. Nature Materials,2013,12(10):932-937. [59] SUN J Y,ZHAO X,ILLEPERUMA W R K,et a1. Highly stretchable and tough hydrogels[J]. Nature,2012,489(7414):133-l36. [60] FEI R,GEORGE J T,PARK J,et al. Ultra-strong thermoresponsive double network hydrogels[J]. Soft Matter,2013,9(10):2912-2919. |