[1] PATRICK J F,HART K R,KRULL B P,et al. Continuous self-healing life cycle in vascularized structural composites[J]. Advanced Materials,2014,26:4302-4308.
[2] GUIMARD N K,OEHLENSCHLAEGER K K,ZHOU J,et al. Current trends in the field of self-healing materials[J]. Macromolecular Chemistry and Physics,2012,213:131-143.
[3] BURATTINI S,GREENLAND B W,MERINO D H,et al. A healable supramolecular polymer blend based on aromatic π-π stacking and hydrogen-bonding interactions[J]. Journal of the American Chemistry Society,2010,132,12051-12058.
[4] DELEBECQ E,PASCAULT J P,BOUTEVIN B,et al. On the versatility of urethane/urea bonds:reversibility,blocked isocyanate,and non-isocyanate polyurethane[J]. Chemical Reviews,2013,113,80-118.
[5] 刘璇璇. 基于热可逆Diels-Alder反应的自修复线型聚氨酯的研究[D]. 上海:上海交通大学,2013. LIU X X Study of self-healing polyurethane based on thermoreversible Diels-Alder reaction[D]. Shanghai:Shanghai Jiao Tong University,2013.
[6] GHOSH B,URBAN M W. Self-repairing oxetane-substituted chitosan polyurethane networks[J]. Science,2009,323:1458-1460.
[7] AMAMOTO Y,OTSUKA H,TAKAHARA A,et al. Self-healing of covalently cross-linked polymers by reshuffling thiuram disulfide moieties in air under visible light[J]. Advanced Materials,2012,24:3975-3980.
[8] MEYER C D,JOINER C S,STODDART F. Template-directed synthesis employing reversible imine bond formation[J]. Chemical Society Reviews,2007,36,1705-1723.
[9] 张云飞,邓国华. 基于动态共价键的可自愈合聚合物凝胶[J]. 化工进展,2012,31(10):2239-2244. ZHANG Y F,DENG G H. Self-healing polymer gels based on dynamic covalent bonds[J]. Chemical Industry and Engineering Progress,2012,31(10):2239-2244.
[10] YUAN Y C,RONG M Z,ZHANG M Q,et al. Self-healing polymeric materials using epoxy/mercaptan as the healant[J]. Macromolecules,2008,41:5197-5202.
[11] OTSUKA H,NAGANO S,KOBASHI Y,et al. A dynamic covalent polymer driven by disulfide metathesis under photoirradiation[J]. Chemical Communications,2010,46:1150-1152.
[12] REKONDO A,MARTIN R,DE LUZURIAGA A R,et al. Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis[J]. Materials Horizons,2014,1:237-240.
[13] 林凤采,卢麒麟,林咏梅,等. 一步法制备乙酰化纳米纤维素及其性能表征[J]. 化工进展,2016,35(2):559-564. LIN F C,LU Q L,LIN Y M,et al. Preparation and characterization of acetylated nanocellulose by one-step method[J]. Chemical Industry and Engineering Progress,2016,35(2):559-564.
[14] 庄森炀,唐丽荣,卢麒麟,等. 磷酸锆辅助催化水解菌糠制备纳米纤维素晶体的性能[J]. 化工进展,2016,35(3):866-871. ZHUANG S Y,TANG L R,LU Q L,et al. Preparation of cellulose nanocrystals by solid catalyst zirconium phosphate assisted hydrolysis from spent mushroom substrate[J]. Chemical Industry and Engineering Progress,2016,35(3):866-871.
[15] 赵云,陈萧宇,庞勇,等.纳米纤维素增强形状记忆聚氨酯材料的研究[J]. 塑料工业,2015,43(8):115-118+123. ZHAO Y,CHEN X,PANG Y,et al. Study on cellulose nanocrystals reinforced shape memory polyurethanes[J]. China Plastics Industry,2015,43(8):115-118,123.
[16] BIYANI M V,FOSTER E J,WEDER C. Light-healable supramolecular nanocomposites based on modified cellulose nanocrystals[J]. ACS Macro Letters,2013,2:236-240.
[17] FOX J,WIE J J,GREENLAND B W,et al. High-strength,healable,supramolecular polymer nanocomposites[J]. Journal of the American Chemical Society,2012,134:5362-5368.
[18] COULIBALY S,ROULIN A,BALOG S,et al. Reinforcement of optically healable supramolecular polymers with cellulose nanocrystals[J]. Macromolecules,2014,47:152-160.
[19] YANG J,ZHANG X,MA M,et al. Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly(ethylene glycol)[J]. ACS Macro Letters,2015,4:829-833.
[20] TANG L,ZHUANG S,LU Q,et al. Ultrasonication-assisted preparation of esterified cellulose nanocrystals via one-pot simultaneous reaction[J]. Journal of Biobased Materials and Bioenergy,2016,10:27-33.
[21] TANG L,HUANG B,LU Q,et al. Ultrasonication-assisted manufacture of cellulose nanocrystals esterified with acetic acid[J]. Bioresource Technology,2013,127:100-105. |