[1] ORTIZ D,CALDER N J,BATRES L,et al. Overview of human health and chemical mixtures:problems facing developing countries[J]. Environ. Health Perspect.,2002,110:901-909. [2] PRANDINI A,TANSINI G,SIGOLO S,et al. On the occurrence of aflatoxin M1 in milk and dairy products[J]. Food. Chem. Toxicol. 2009,47(5):984-991. [3] LUO Y,LI Z,YUAN Y,et al. Bioadsorption of patulin from Kiwi fruit juice onto a superior magnetic chitosan[J]. J. Alloys. Compd.,2016,667:101-109. [4] RENZONI A,ZINO F,FRANCHI E. Mercury levels along the food chain and risk for exposed populations[J]. Environ. Res.,1998,77(2):68-72. [5] WOLFE M F,SCHWARZBACH S,SULAIMAN R A. Effects of mercury on wildlife:a comprehensive review[J]. Environ. Toxicolo. Chem.,1998,17(2):146-160. [6] ERDEMIR S,TABAKCI B,TABAKCI M. A highly selective fluorescent sensor based on calix[4] arene appended benzothiazole units for Cu2+,S2- and HSO4- ions in aqueous solution[J]. Sens. Actuators B,2016,228:109-116. [7] HAYAT A,HAIDER W,RAZA Y,et al. Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes[J]. Talanta,2015,143:157-161. [8] LIU Q,JIA Q,ZHU R,et al. 5,10,15,20-tetrakis(4-carboxyl phenyl)porphyrincds nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection[J]. J. Mater. Sci. Eng. C,2014,42:177-184. [9] GAO L,ZHUANG J,NIE L,et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles[J]. Nat. Nano-technol.,2007,2(9):577-583. [10] ASATI A,KAITTANIS C,SANTRA S,et al. pH-tunable oxidase-like activity of cerium oxide nanoparticles achieving sensitive fluorigenic detection of cancer biomarkers at neutral pH[J]. Anal. Chem.,2011,83(7):2547-2553. [11] ZHANG X,HE S,CHEN Z,et al. CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines[J]. J. Agric. Food. Chem.,2013,61(4):840-847. [12] HE X,TAN L,CHEN D,et al. Fe3O4-Au@mesoporous SiO2 microspheres:an ideal artificial enzymatic cascade system[J]. Chem. Commun.,2013,49(41):4643-4645. [13] LI Y,HE X,YIN J J,et al. Acquired superoxide-scavenging ability of ceria nanoparticles[J]. Angew. Chem. Int. Edit.,2015,54(6):1832-1835. [14] RAGG R,NATALIO F,TAHIR M N,et al. Molybdenum trioxide nanoparticles with intrinsic sulfite oxidase activity[J]. ACS Nano,2014,8(5):5182-5189. [15] NATALIO F,ANDR R,HARTOG A F,et al. Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation[J]. Nat. Nano-technol.,2012,7(8):530-535. [16] JV Y,LI B,CAO R. Positively-charged gold nanoparticles as peroxidiase mimic and their application in hydrogen peroxide and glucose detection[J]. Chem. Commun.,2010,46(42):8017-8019. [17] JIANG H,CHEN Z,CAO H,et al. Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose[J]. Analyst,2012,137(23):5560-5564. [18] LI J,LIU W,WU X,et al. Mechanism of pH-switchable peroxidase and catalase-like activities of gold,silver,platinum and palladium[J]. Biomaterials,2015,48:37-44. [19] MITRA K,GHOSH A B,SARKAR A,et al. Colorimetric estimation of human glucose level using γ-Fe2O3 nanoparticles:an easily recoverable effective mimic peroxidase[J]. Biochem. Bioph. Res. Commun.,2014,451(1):30-35. [20] ASATI A,SANTRA S,KAITTANIS C,et al. Oxidase-like activity of polymer-coated cerium oxide nanoparticles[J]. Angew. Chem. Int. Edit.,2009,48(13):2308-2312. [21] YIN J,CAO H,LU Y. Self-assembly into magnetic CO3O4 complex nanostructures as peroxidase[J]. J. Mater. Chem.,2012,22(2):527-534. [22] CHEN W,CHEN J,FENG Y B,et al. Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose[J]. Analyst,2012,137(7):1706-1712. [23] WAN Y,QI P,ZHANG D,et al. Manganese oxide nanowire-mediated enzyme-linked immunosorbent assay[J]. Biosens. Bioelectron.,2012,33(1):69-74. [24] FAN Y,HUANG Y. The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose[J]. Analyst,2012,137(5):1225-1231. [25] BHATTACHARYA D,BAKSI A,BANERJEE I,et al. Development of phosphonate modified Fe(1-x)MnxFe2O4 mixed ferrite nanoparticles:novel peroxidase mimetics in enzyme linked immunosorbent assay[J]. Talanta,2011,86:337-348. [26] SU L,FENG J,ZHOU X,et al. Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles[J]. Anal. Chem.,2012,84(13):5753-5758. [27] DUTTA A K,DAS S,SAMANTA S,et al. CuS nanoparticles as a mimic peroxidase for colorimetric estimation of human blood glucose level[J]. Talanta,2013,107:361-367. [28] SONG Y,WANG X,ZHAO C,et al. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity[J]. Chem. Eur. J.,2010,16(12):3617-3621. [29] SONG Y,QU K,ZHAO C,et al. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection[J]. Adv. Mater.,2010,22(19):2206-2210. [30] LIN T,ZHONG L,WANG J,et al. Graphite-like carbon nitrides as peroxidase mimetics and their applications to glucose detection[J]. Biosens. Bioelectron.,2014,59:89-93. [31] QIAN J,YANG X,JIANG L,et al. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine[J]. Sens. Actuators B,2014,201:160-166. [32] SHEN J,YANG Y,ZHANG Y,et al. Functionalized Au-Fe3O4 nanocomposites as a magnetic and colorimetric bimodal sensor for melamine[J]. Sens. Actuators B,2016,226:512-517. [33] FREY A,MECKELEIN B,EXTERNEST D,et al. A stable and highly sensitive 3,3',5,5'-tetramethylbenzidine-based substrate reagent for enzyme-linked immunosorbent assays[J]. J. Immunol. Methods.,2000,233(1):47-56. [34] JIAO K,SUN G,ZHANG S. Enzyme-catalyzed reaction of OPD-H2O2-HRP voltammetric enzyme-linked immunoassay system[J]. Sci. China. Ser. B,1998,41(4):345-352. [35] CHEN C,ZHAO D,LU L,et al. A simple and rapid colorimetric sensor for sulfide anion detection based on redox reaction of abts with Au(Ⅲ)[J]. Sens. Actuators B,2015,220:1247-1253. [36] 陈晨,李慧. 生物传感器在食品安全检测中的应用[J]. 现代食品,2016(7):68-69. CHEN C,LI H. Application of biosensors in food safety inspection[J]. Mod. Food,2016(7):68-69. [37] 李赟. 生物技术在食品检测方面的应用研究[J]. 现代食品,2016(7):97-98. LI Y. Research on the application of biotechnology in food inspection[J]. Mod. Food,2016(7):97-98. [38] WANG Z,HU J,JIN Y,et al. In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label[J]. Clin. Chem.,2006,52(10):1958-1961. [39] WANG M J,SUN C Y,WANG L Y,et.al Electrochemical detection of DNA immobilized on gold colloid particles modified self-assembled monolayer electrode with silver nanoparticle label[J]. Pharm. Biomed. Anal.,2002,33(5):1117-1125. [40] CHEN D,FENG H B,Li J H. Graphene oxide:preparation,functionalization,and electrochemical applications[J]. Chem. Rev.,2012,112(11):6027-6053. [41] MIRKIN C A,LETSINGER R L,MUCIC R C,et al. A DNA-based method for rationally assembling nanoparticles into macroscopic materials[J]. Nature,1996,382(6592):607-609. [42] LIU J,LU Y. A colorimetric lead biosensor using dnazyme-directed assembly of gold nanoparticles[J]. J. Am. Chem. Soc.,2003,125(22):6642-6643. [43] LIU C W,HSIEH Y T,HUANG C C,et al. Detection of mercury (Ⅱ)based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles[J]. Chem. Commun.,2008,19:2242-2244. [44] SHARMA J,CHHABRA R,YAN H,et al. pH-driven conformational switch of "i-motif" DNA for the reversible assembly of gold nanoparticles[J]. Chem. Commun.,2007,5:477-479. [45] PAVLOV V,XIAO Y,SHLYAHOVSKY B,et al. Aptamer-functionalized au nanoparticles for the amplified optical detection of thrombin[J]. J. Am. Chem. Soc.,2004,126(38):11768-11769. [46] 田丹碧,张卫,汤燕,等. 纳米金生物共轭探针在酶活检测中的应用[J]. 化学进展,2014,27(2/3):267-274. TIAN D B,ZHANG W,TANG Y,et al. Bioconjugate probe for enzyme activity based on gold nanopparrticles[J]. Prog. Chem.,2014,27(2/3):267-274. [47] 郭建伟,刘雪刚,丁一刚,等. 金纳米制备及催化进展[J]. 化工进展,2010,29(11):2095-2102. Guo J W,LIU X G,DING Y G,et al. Progress in nano-gold preparation and catalysis[J]. Chem. Ind. Eng. Prog.,2010,29(11):2095-2102. [48] CHEN Y M,YU C J,CHENG T L,et al. Colorimetric detection of lysozyme based on electrostatic interaction with human serum albumin-modified gold nanoparticles[J]. Langmuir,2008,24(7):3654-3660. [49] TAN Y N,SU X,LIU E T,et al. Gold-nanoparticle-based assay for instantaneous detection of nuclear hormone receptor response elements interactions[J]. Anal. Chem.,2010,82(7):2759-2765. [50] LEE H,JOO S W,LEE S Y,et al. Colorimetric genotyping of single nucleotide polymorphism based on selective aggregation of unmodified gold nanoparticles[J]. Biosens. Bioelectron.,2010,26(2):730-735. [51] WOO J R,LIM D K,NAM J M. Minimally stable nanoparticle-based colorimetric assay for simple,rapid,and sensitive antibody structure and activity evaluation[J]. Small,2011,7(5):648-655. [52] JEFFREY C. Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation[J]. Chem. Commun.,20007,36:3729-3731. [53] JIANG T,LIU R,HUANG X,et al. Colorimetric screening of bacterial enzyme activity and inhibition based on the aggregation of gold nanoparticles[J]. Chem. Commun.,2009,15:1972-1974. [54] ZAYATS M,BARON R,POPOV I,et al. Biocatalytic growth of au nanoparticles:from mechanistic aspects to biosensors design[J]. Nano Lett.,2005,5(1):21-25. [55] SCAMPICCHIO M,WANG J,BLASCO A J,et al. Nanoparticle-based assays of antioxidant activity[J]. Anal. Chem.,2006,78(6):2060-2063. [56] LI X X,CAO C,HAN S J,et al. Detection of pathogen based on the catalytic growth of gold nanocrystals[J]. Water Res.,2009,43(5):1425-1431. [57] SCAMPICCHIO M,ARECCHI A,MANNINO S. Optical nanoprobes based on gold nanoparticles for sugar sensing[J]. Nanotechnology,2009,20:135501-135506. [58] SASTRY M,LALA N,PATIL V,et al. Optical absorption study of the biotin-avidin interaction on colloidal silver and gold particles[J]. Langmuir,1998,14(15):4138-4142. [59] LEE J S,LYTTONJEAN A K,HURST S J,et al. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties[J]. Nano Lett.,2007,7(7):2112-2115. [60] WEI H,CHEN C,HAN B,et al. Enzyme colorimetric assay using unmodified silver nanoparticles[J]. Anal. Chem.,2008,80(18):7051-7055. [61] DELLA PELLE F,GONZLEZ M C,SERGI M,et al. Gold nanoparticles-based extraction-free colorimetric assay in organic media:an optical index for determination of total polyphenols in fat-rich samples[J]. Anal. Chem.,2015,87(13):6905-6911. [62] QIN W,SU L,YANG C,et al. Colorimetric detection of sulfite in foods by a TMB-O2-Co3O4 nanoparticles detection system[J]. J. Agric. Food Chem.,2014,62(25):5827-5834. [63] QIAN J,YANG X,JIANG L,et al. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine[J]. Sens. Actuators B,2014,201:160-166. [64] CASTILLO G,LAMBERTI I,MOSIELLO L,et al. Impedimetric DNA aptasensor for sensitive detection of ochratoxin a in food[J]. Electroanalysis,2012,24(3):512-520. [65] RHOUATI A,YANG C,HAYAT A,et al. Aptamers:a promising tool for ochratoxin a detection in food analysis[J]. Toxins,2013,5(11):1988-2008. [66] WANG L,MA W,CHEN W,et al. An aptamer-based chromatographic strip assay for sensitive toxin semi-quantitative detection[J]. Biosens. Bioelectro.,2011,26(6):3059-3062. [67] WANG C,QIAN J,WANG K,et al. Colorimetric aptasensing of ochratoxin a using Au@Fe3O4 nanoparticles as signal indicator and magnetic separator[J]. Biosens. Bioelectro.,2016,77:1183-1191. [68] WENG Z,WANG H,VONGSVIVUT J,et al. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions[J]. Anal. Chim. Acta.,2013,803:128-134. [69] CHAIYO S,SIANGPROH W,APILUX A,et al. Highly selective and sensitive paper-based colorimetric sensor using thiosulfate catalytic etching of silver nanoplates for trace determination of copper ions[J]. Anal. Chim. Acta.,2015,866:75-83. [70] ZHOU Y,DONG H,LIU L,et al. Selective and sensitive colorimetric sensor of mercury(Ⅱ)based on gold nanoparticles and 4-mercaptophenylboronic acid[J]. Sens. Actuators B,2014,196:106-111. [71] D'SOUZA S L,PATI R K,KAILASA S K. Ascorbic acid functionalized gold nanoparticles as a probe for colorimetric and visual read-out determination of dichlorvos in environmental samples[J]. Anal. Methods,2014,6(22):9007-9014. [72] WANG X D,YANG Y Y,DONG J,et al. Lanthanum-functionalized gold nanoparticles for coordination-bonding recognition and colorimetric detection of methyl parathion with high sensitivity[J]. Sen. Actuators B,2014,204:119-124. [73] XIONG D,LI H. Colorimetric detection of pesticides based on calixarene modified silver nanoparticles in water[J]. Nanotechnology,2008,19:465502-465507. [74] LIANG M,FAN K,PAN Y,et al. Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent[J]. Anal. Chem.,2012,85(1):308-312. [75] MIAO Y,GAN N,LI T,et al. A colorimetric aptasensor for chloramphenicol in fish based on double-stranded DNA antibody labeled enzyme-linked polymer nanotracers for signal amplification[J]. Sen. Actuators B,2015,220:679-687. [76] BORASE H P,PATIL C D,SALUNKHE R B,et al. Biofunctionalized silver nanoparticles as a novel colorimetric probe for melamine detection in raw milk[J]. Biotechnol. Appl. Biochem.,2015,62(5):652-662. [77] DING N,YAN N,REN C,et al. Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles-H2O2-abts detection system[J]. Anal. Chem.,2010,82(13):5897-5899. |