化工进展 ›› 2024, Vol. 43 ›› Issue (4): 1923-1933.DOI: 10.16085/j.issn.1000-6613.2023-0613
• 材料科学与技术 • 上一篇
李萍1(), 陈修乐1, 张强2, 念腾飞1, 王育兴2, 王盟3
收稿日期:
2023-04-16
修回日期:
2023-05-04
出版日期:
2024-04-15
发布日期:
2024-05-13
通讯作者:
李萍
作者简介:
李萍(1972—),女,博士生导师,研究方向为环保功能型沥青材料。E-mail:lzlgliping@126.com。
基金资助:
LI Ping1(), CHEN Xiule1, ZHANG Qiang2, NIAN Tengfei1, WANG Yuxing2, WANG Meng3
Received:
2023-04-16
Revised:
2023-05-04
Online:
2024-04-15
Published:
2024-05-13
Contact:
LI Ping
摘要:
为抑制沥青在高温下烟气的产生,降低环境污染及对作业人员健康的影响程度,本文进行了抑烟沥青复掺配比优化研究。基于单掺抑烟沥青的针入度、延度及软化点及自制沥青烟生成富集装置的沥青产烟结果,结合熵权法与遗传算法进行抑烟沥青复掺配比优化,并分析优化复掺抑烟剂在沥青中的分散均匀性、储存稳定性及其对沥青特征官能团的影响;基于优化复掺配比的抑烟沥青高、中、低温性能测试,并对其抑烟效果进行评价,验证优化复掺配比方法的有效性。研究表明:抑烟剂均匀分散于沥青中,且未对沥青特征官能团产生改变,优化复掺抑烟沥青满足储存稳定性要求。优化复掺抑烟剂对沥青高、低温性能具有改善作用,并提升了沥青中温抗疲劳性能。沥青烟收集前后滤管颜色变化表明该沥青烟富集方式具有较高的可靠性,且优化复掺抑烟沥青具有显著抑烟效果,最大抑烟率为99.7%。优化复掺配比下的指标预测值与实测值差异较小,证明了该优化复掺配比方法的可靠性。
中图分类号:
李萍, 陈修乐, 张强, 念腾飞, 王育兴, 王盟. 抑烟沥青复掺配比优化及抑烟效果评价[J]. 化工进展, 2024, 43(4): 1923-1933.
LI Ping, CHEN Xiule, ZHANG Qiang, NIAN Tengfei, WANG Yuxing, WANG Meng. Optimization of compounding ratio of fume-suppressing asphalt and evaluation of its effect of fume suppression[J]. Chemical Industry and Engineering Progress, 2024, 43(4): 1923-1933.
指标 | 测试结果 | 技术 要求 | |
---|---|---|---|
SK | ZH | ||
针入度(25℃)/0.1mm | 83 | 84 | 80~100 |
延度(10℃)/cm | 56 | 58 | ≥35 |
软化点/℃ | 47.9 | 46.8 | 42~52 |
RTFOT后残留物 | |||
质量损失/% | -0.03 | -0.53 | ≤±0.4 |
残留针入度比/% | 60.8 | 65.2 | ≥57 |
残留延度/cm | 11.8 | 12 | ≥8 |
表1 沥青指标测试结果
指标 | 测试结果 | 技术 要求 | |
---|---|---|---|
SK | ZH | ||
针入度(25℃)/0.1mm | 83 | 84 | 80~100 |
延度(10℃)/cm | 56 | 58 | ≥35 |
软化点/℃ | 47.9 | 46.8 | 42~52 |
RTFOT后残留物 | |||
质量损失/% | -0.03 | -0.53 | ≤±0.4 |
残留针入度比/% | 60.8 | 65.2 | ≥57 |
残留延度/cm | 11.8 | 12 | ≥8 |
抑烟剂种类 | 掺量/% | |||
---|---|---|---|---|
有机蒙脱土 | 6 | 8 | 10 | 12 |
无机蒙脱土 | 6 | 8 | 10 | 12 |
活性炭粉 | 1 | 2 | 3 | 4 |
三聚氰胺 | 1 | 2 | 3 | 4 |
Al(OH)3 | 4 | 6 | 8 | 10 |
Mg(OH)2 | 4 | 6 | 8 | 10 |
聚丙烯纤维 | 1 | 2 | 3 | 4 |
聚苯乙烯 | 1 | 2 | 3 | 4 |
电气石粉(325目) | 12 | 14 | 16 | 18 |
电气石粉(800目) | 12 | 14 | 16 | 18 |
电气石粉(1250目) | 12 | 14 | 16 | 18 |
电气石粉(2000目) | 12 | 14 | 16 | 18 |
电气石粉(5000目) | 12 | 14 | 16 | 18 |
电气石粉(10000目) | 12 | 14 | 16 | 18 |
表2 抑烟剂种类及掺量
抑烟剂种类 | 掺量/% | |||
---|---|---|---|---|
有机蒙脱土 | 6 | 8 | 10 | 12 |
无机蒙脱土 | 6 | 8 | 10 | 12 |
活性炭粉 | 1 | 2 | 3 | 4 |
三聚氰胺 | 1 | 2 | 3 | 4 |
Al(OH)3 | 4 | 6 | 8 | 10 |
Mg(OH)2 | 4 | 6 | 8 | 10 |
聚丙烯纤维 | 1 | 2 | 3 | 4 |
聚苯乙烯 | 1 | 2 | 3 | 4 |
电气石粉(325目) | 12 | 14 | 16 | 18 |
电气石粉(800目) | 12 | 14 | 16 | 18 |
电气石粉(1250目) | 12 | 14 | 16 | 18 |
电气石粉(2000目) | 12 | 14 | 16 | 18 |
电气石粉(5000目) | 12 | 14 | 16 | 18 |
电气石粉(10000目) | 12 | 14 | 16 | 18 |
运算参数 | 数值 |
---|---|
初始种群数 | 100 |
交叉概率 | 0.4 |
变异概率 | 0.05 |
最大迭代次数 | 200 |
表3 遗传算法运算参数取值
运算参数 | 数值 |
---|---|
初始种群数 | 100 |
交叉概率 | 0.4 |
变异概率 | 0.05 |
最大迭代次数 | 200 |
抑烟沥青种类 | 针入度/0.1mm | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|
电气石(325目)-12% | 75.3 | 37.4 | 46.9 | 25.5 |
电气石(325目)-14% | 73.6 | 35.7 | 47.1 | 26.2 |
电气石(325目)-16% | 72.7 | 33.4 | 47.3 | 38.5 |
电气石(325目)-18% | 71.0 | 30.5 | 47.5 | 34.4 |
电气石(800目)-12% | 73.7 | 34.8 | 45.8 | 46.7 |
电气石(800目)-14% | 72.5 | 32.8 | 46.7 | 61.1 |
电气石(800目)-16% | 70.8 | 29.1 | 47.1 | 78.1 |
电气石(800目)-18% | 68.4 | 26.8 | 47.4 | 71.8 |
电气石(1250目)-12% | 73.3 | 33.0 | 45.0 | 29.3 |
电气石(1250目)-14% | 71.3 | 31.2 | 45.5 | 32.3 |
电气石(1250目)-16% | 69.2 | 28.0 | 46.6 | 84.6 |
电气石(1250目)-18% | 67.8 | 26.2 | 47.0 | 76.8 |
电气石(2000目)-12% | 76.9 | 35.2 | 46.9 | 58.3 |
电气石(2000目)-14% | 76.2 | 33.9 | 47.1 | 59.5 |
电气石(2000目)-16% | 75.4 | 32.4 | 47.4 | 91.3 |
电气石(2000目)-18% | 73.4 | 29.9 | 48.1 | 86.2 |
电气石(5000目)-12% | 83.2 | 36.0 | 47.7 | 63.7 |
电气石(5000目)-14% | 82.6 | 34.8 | 47.8 | 72.3 |
电气石(5000目)-16% | 80.9 | 33.6 | 47.9 | 86.2 |
电气石(5000目)-18% | 76.5 | 31.2 | 48.3 | 58.5 |
电气石(10000目)-12% | 71 | 34.9 | 46.4 | 40.3 |
电气石(10000目)-14% | 71.2 | 33.6 | 46.9 | 63.7 |
电气石(10000目)-16% | 69.1 | 29.5 | 47.8 | 90.2 |
电气石(10000目)-18% | 67.6 | 28.7 | 48.4 | 88.7 |
有机蒙脱土-6% | 81.8 | 39.3 | 49.1 | 84.9 |
有机蒙脱土-8% | 83.9 | 37.7 | 52.0 | 86.4 |
有机蒙脱土-10% | 86.3 | 37.3 | 55.6 | 97.6 |
有机蒙脱土-12% | 88.5 | 35.2 | 62.2 | 88.2 |
无机蒙脱土-6% | 83.7 | 40.0 | 49.1 | 41.6 |
无机蒙脱土-8% | 82.2 | 42.1 | 47.7 | 57.3 |
无机蒙脱土-10% | 79.8 | 37.9 | 48.2 | 85.6 |
无机蒙脱土-12% | 78.9 | 35.4 | 48.7 | 58.2 |
聚丙烯-1% | 53.9 | 27.1 | 48.8 | 48.6 |
聚丙烯-2% | 58.2 | 27.9 | 48.1 | 31.8 |
聚丙烯-3% | 61.0 | 31.2 | 48.1 | 24.9 |
聚丙烯-4% | 59.3 | 31.6 | 48.8 | 35.7 |
聚苯乙烯-1% | 80.7 | 76.0 | 46.2 | 70.4 |
聚苯乙烯-2% | 73.9 | 27.7 | 47.1 | 40.5 |
聚苯乙烯-3% | 69.2 | 17.5 | 47.6 | 43.1 |
聚苯乙烯-4% | 47.7 | 9.9 | 50.4 | 79.4 |
Mg(OH)2-6% | 70.5 | 32.8 | 49.2 | 53.1 |
Mg(OH)2-8% | 73.7 | 27.9 | 51.1 | 66.2 |
Mg(OH)2-10% | 68.3 | 24.6 | 52.8 | 88.7 |
Mg(OH)2-12% | 66.3 | 24.0 | 54.1 | 47.8 |
Al(OH)3-6% | 76.8 | 35.0 | 46.2 | 33.8 |
Al(OH)3-8% | 75.2 | 25.7 | 47.1 | 38.0 |
Al(OH)3-10% | 73.1 | 23.5 | 47.6 | 75.7 |
Al(OH)3-12% | 72.7 | 20.8 | 50.4 | 71.9 |
C-1% | 68.1 | 36.0 | 45.6 | 83.4 |
C-2% | 58.6 | 27.7 | 47.1 | 29.4 |
C-3% | 61.2 | 17.5 | 47.6 | 83.0 |
C-4% | 56.8 | 9.9 | 50.4 | 72.6 |
三聚氰胺-1% | 80.9 | 26.0 | 46.2 | 53.6 |
三聚氰胺-2% | 79.9 | 17.7 | 48.9 | 45.3 |
三聚氰胺-3% | 81.8 | 15.5 | 49.7 | 15.7 |
三聚氰胺-4% | 83.6 | 11.9 | 50.4 | 87.8 |
表4 单掺抑烟沥青的针入度、延度、软化点及抑烟率
抑烟沥青种类 | 针入度/0.1mm | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|
电气石(325目)-12% | 75.3 | 37.4 | 46.9 | 25.5 |
电气石(325目)-14% | 73.6 | 35.7 | 47.1 | 26.2 |
电气石(325目)-16% | 72.7 | 33.4 | 47.3 | 38.5 |
电气石(325目)-18% | 71.0 | 30.5 | 47.5 | 34.4 |
电气石(800目)-12% | 73.7 | 34.8 | 45.8 | 46.7 |
电气石(800目)-14% | 72.5 | 32.8 | 46.7 | 61.1 |
电气石(800目)-16% | 70.8 | 29.1 | 47.1 | 78.1 |
电气石(800目)-18% | 68.4 | 26.8 | 47.4 | 71.8 |
电气石(1250目)-12% | 73.3 | 33.0 | 45.0 | 29.3 |
电气石(1250目)-14% | 71.3 | 31.2 | 45.5 | 32.3 |
电气石(1250目)-16% | 69.2 | 28.0 | 46.6 | 84.6 |
电气石(1250目)-18% | 67.8 | 26.2 | 47.0 | 76.8 |
电气石(2000目)-12% | 76.9 | 35.2 | 46.9 | 58.3 |
电气石(2000目)-14% | 76.2 | 33.9 | 47.1 | 59.5 |
电气石(2000目)-16% | 75.4 | 32.4 | 47.4 | 91.3 |
电气石(2000目)-18% | 73.4 | 29.9 | 48.1 | 86.2 |
电气石(5000目)-12% | 83.2 | 36.0 | 47.7 | 63.7 |
电气石(5000目)-14% | 82.6 | 34.8 | 47.8 | 72.3 |
电气石(5000目)-16% | 80.9 | 33.6 | 47.9 | 86.2 |
电气石(5000目)-18% | 76.5 | 31.2 | 48.3 | 58.5 |
电气石(10000目)-12% | 71 | 34.9 | 46.4 | 40.3 |
电气石(10000目)-14% | 71.2 | 33.6 | 46.9 | 63.7 |
电气石(10000目)-16% | 69.1 | 29.5 | 47.8 | 90.2 |
电气石(10000目)-18% | 67.6 | 28.7 | 48.4 | 88.7 |
有机蒙脱土-6% | 81.8 | 39.3 | 49.1 | 84.9 |
有机蒙脱土-8% | 83.9 | 37.7 | 52.0 | 86.4 |
有机蒙脱土-10% | 86.3 | 37.3 | 55.6 | 97.6 |
有机蒙脱土-12% | 88.5 | 35.2 | 62.2 | 88.2 |
无机蒙脱土-6% | 83.7 | 40.0 | 49.1 | 41.6 |
无机蒙脱土-8% | 82.2 | 42.1 | 47.7 | 57.3 |
无机蒙脱土-10% | 79.8 | 37.9 | 48.2 | 85.6 |
无机蒙脱土-12% | 78.9 | 35.4 | 48.7 | 58.2 |
聚丙烯-1% | 53.9 | 27.1 | 48.8 | 48.6 |
聚丙烯-2% | 58.2 | 27.9 | 48.1 | 31.8 |
聚丙烯-3% | 61.0 | 31.2 | 48.1 | 24.9 |
聚丙烯-4% | 59.3 | 31.6 | 48.8 | 35.7 |
聚苯乙烯-1% | 80.7 | 76.0 | 46.2 | 70.4 |
聚苯乙烯-2% | 73.9 | 27.7 | 47.1 | 40.5 |
聚苯乙烯-3% | 69.2 | 17.5 | 47.6 | 43.1 |
聚苯乙烯-4% | 47.7 | 9.9 | 50.4 | 79.4 |
Mg(OH)2-6% | 70.5 | 32.8 | 49.2 | 53.1 |
Mg(OH)2-8% | 73.7 | 27.9 | 51.1 | 66.2 |
Mg(OH)2-10% | 68.3 | 24.6 | 52.8 | 88.7 |
Mg(OH)2-12% | 66.3 | 24.0 | 54.1 | 47.8 |
Al(OH)3-6% | 76.8 | 35.0 | 46.2 | 33.8 |
Al(OH)3-8% | 75.2 | 25.7 | 47.1 | 38.0 |
Al(OH)3-10% | 73.1 | 23.5 | 47.6 | 75.7 |
Al(OH)3-12% | 72.7 | 20.8 | 50.4 | 71.9 |
C-1% | 68.1 | 36.0 | 45.6 | 83.4 |
C-2% | 58.6 | 27.7 | 47.1 | 29.4 |
C-3% | 61.2 | 17.5 | 47.6 | 83.0 |
C-4% | 56.8 | 9.9 | 50.4 | 72.6 |
三聚氰胺-1% | 80.9 | 26.0 | 46.2 | 53.6 |
三聚氰胺-2% | 79.9 | 17.7 | 48.9 | 45.3 |
三聚氰胺-3% | 81.8 | 15.5 | 49.7 | 15.7 |
三聚氰胺-4% | 83.6 | 11.9 | 50.4 | 87.8 |
沥青种类 | 参数 | 指标 | |||
---|---|---|---|---|---|
针入度 | 延度 | 软化点 | 抑烟率 | ||
SK | 信息熵 | 0.95 | 0.94 | 0.89 | 0.92 |
权重 | 0.16 | 0.20 | 0.37 | 0.26 | |
ZH | 信息熵 | 0.90 | 0.94 | 0.86 | 0.90 |
权重 | 0.25 | 0.15 | 0.35 | 0.25 |
表5 SK及ZH单掺抑烟沥青的信息熵及权重结果
沥青种类 | 参数 | 指标 | |||
---|---|---|---|---|---|
针入度 | 延度 | 软化点 | 抑烟率 | ||
SK | 信息熵 | 0.95 | 0.94 | 0.89 | 0.92 |
权重 | 0.16 | 0.20 | 0.37 | 0.26 | |
ZH | 信息熵 | 0.90 | 0.94 | 0.86 | 0.90 |
权重 | 0.25 | 0.15 | 0.35 | 0.25 |
沥青种类 | 目标函数值 | 优化复掺配比组合 | 针入度/0.1mm | 简称 | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|---|---|---|
SK | 42.83 | 有机蒙脱土∶电气石(2000目)=9.5∶16.3 | 93.68 | SK-1 | 51.59 | 46.66 | 99.54 |
有机蒙脱土∶电气石(5000目)=12.2∶15.8 | 91.82 | SK-2 | 51.78 | 47.35 | 98.55 | ||
ZH | 53.04 | 有机蒙脱土∶电气石(2000目)=12.4∶16.6 | 95.26 | ZH-1 | 50.08 | 61.35 | 99.86 |
无机蒙脱土∶电气石(2000目)=10.8∶16.0 | 96.72 | ZH-2 | 48.80 | 59.06 | 100.00 |
表6 优化复掺配比及对应的指标预测值
沥青种类 | 目标函数值 | 优化复掺配比组合 | 针入度/0.1mm | 简称 | 延度(10℃)/cm | 软化点/℃ | 抑烟率/% |
---|---|---|---|---|---|---|---|
SK | 42.83 | 有机蒙脱土∶电气石(2000目)=9.5∶16.3 | 93.68 | SK-1 | 51.59 | 46.66 | 99.54 |
有机蒙脱土∶电气石(5000目)=12.2∶15.8 | 91.82 | SK-2 | 51.78 | 47.35 | 98.55 | ||
ZH | 53.04 | 有机蒙脱土∶电气石(2000目)=12.4∶16.6 | 95.26 | ZH-1 | 50.08 | 61.35 | 99.86 |
无机蒙脱土∶电气石(2000目)=10.8∶16.0 | 96.72 | ZH-2 | 48.80 | 59.06 | 100.00 |
沥青种类 | 上部/℃ | 下部/℃ | 软化点差/℃ |
---|---|---|---|
SK-1 | 47.1 | 46.4 | 0.7 |
SK-2 | 47.9 | 46.6 | 1.3 |
ZH-1 | 47.3 | 46.4 | 0.9 |
ZH-2 | 48.2 | 45.9 | 2.3 |
表7 优化复掺抑烟沥青离析试验结果
沥青种类 | 上部/℃ | 下部/℃ | 软化点差/℃ |
---|---|---|---|
SK-1 | 47.1 | 46.4 | 0.7 |
SK-2 | 47.9 | 46.6 | 1.3 |
ZH-1 | 47.3 | 46.4 | 0.9 |
ZH-2 | 48.2 | 45.9 | 2.3 |
沥青种类 | 针入度/0.1mm | 10℃延度/cm | 软化点/℃ |
---|---|---|---|
SK-1 | 85.3 | 48.8 | 46.7 |
SK-2 | 84.9 | 47.2 | 44.3 |
ZH-1 | 86.9 | 43.4 | 47.8 |
ZH-2 | 84.1 | 45.6 | 47.9 |
表8 优化复掺抑烟沥青的针入度、延度及软化点
沥青种类 | 针入度/0.1mm | 10℃延度/cm | 软化点/℃ |
---|---|---|---|
SK-1 | 85.3 | 48.8 | 46.7 |
SK-2 | 84.9 | 47.2 | 44.3 |
ZH-1 | 86.9 | 43.4 | 47.8 |
ZH-2 | 84.1 | 45.6 | 47.9 |
沥青种类 | 相对误差/% | |||
---|---|---|---|---|
针入度 | 延度(10℃) | 软化点 | 抑烟率 | |
SK-1 | 8.9 | 5.4 | 0.1 | 1.9 |
SK-2 | 7.5 | 8.8 | 3.3 | -0.1 |
ZH-1 | 8.8 | 13.3 | 20.0 | 0.2 |
ZH-2 | 13.0 | 6.6 | 16.7 | 0.4 |
平均相对误差/% | 9.6 | 8.5 | 10.0 | 0.6 |
表9 指标实测值与预测值平均相对误差
沥青种类 | 相对误差/% | |||
---|---|---|---|---|
针入度 | 延度(10℃) | 软化点 | 抑烟率 | |
SK-1 | 8.9 | 5.4 | 0.1 | 1.9 |
SK-2 | 7.5 | 8.8 | 3.3 | -0.1 |
ZH-1 | 8.8 | 13.3 | 20.0 | 0.2 |
ZH-2 | 13.0 | 6.6 | 16.7 | 0.4 |
平均相对误差/% | 9.6 | 8.5 | 10.0 | 0.6 |
1 | 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. |
Editorial Department of China Journal of Highway and Transport. Review on China’s pavement engineering Research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. | |
2 | LIANG Yafeng, TANG Xuejiao, ZHU Qing, et al. A review: Application of tourmaline in environmental fields[J]. Chemosphere, 2021, 281: 130780. |
3 | YANG Jun, LI Zuyuan, XU Xinquan. Preparation and evaluation of cooling asphalt concrete modified with SBS and tourmaline anion powder[J]. Journal of Cleaner Production, 2021, 289: 125135. |
4 | THIVES Liseane Padilha, GHISI Enedir. Asphalt mixtures emission and energy consumption: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 72: 473-484. |
5 | 杨小龙, 申爱琴, 蒋宜馨, 等. 基于阻燃抑烟的纳米黏土改性沥青综述[J]. 交通运输工程学报, 2021, 21(5): 42-61. |
YANG Xiaolong, SHEN Aiqin, JIANG Yixin, et al. Review on nano clay modified asphalt based on flame retardant and smoke suppression[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 42-61. | |
6 | 王朝辉, 李彦伟, 葛娟, 等. Tourmaline改性沥青及其混合料热拌减排性能[J]. 中国公路学报, 2014, 27(11): 17-24. |
WANG Chaohui, LI Yanwei, GE Juan, et al. Emission reduction effect of tourmaline modified asphalt and its mixtures under condition of hot-mix[J]. China Journal of Highway and Transport, 2014, 27(11): 17-24. | |
7 | YANG Xiaolong, SHEN A, JIANG Yixin, et al. Properties and mechanism of flame retardance and smoke suppression in asphalt binder containing organic montmorillonite[J]. Construction and Building Materials, 2021, 302: 124148. |
8 | ABDULLAH Mohd Ezree, HAININ Mohd Rosli, YUSOFF Nur Izzi MD, et al. Laboratory evaluation on the characteristics and pollutant emissions of nanoclay and chemical warm mix asphalt modified binders[J]. Construction and Building Materials, 2016, 113: 488-497. |
9 | XU Tao, WANG Yang, XIA Wenjing, et al. Effects of flame retardants on thermal decomposition of SARA fractions separated from asphalt binder[J]. Construction and Building Materials, 2018, 173: 209-219. |
10 | PEI Jianzhong, WEN Yong, LI Yanwei, et al. Flame-retarding effects and combustion properties of asphalt binder blended with organo montmorillonite and alumina trihydrate[J]. Construction and Building Materials, 2014, 72: 41-47. |
11 | 郭寅川, 王涵, 申爱琴, 等. ATH/OMMT复合改性沥青阻燃抑烟性能与机理分析[J]. 硅酸盐通报, 2020, 39(6): 1989-1997. |
GUO Yinchuan, WANG Han, SHEN Aiqin, et al. Analysis of flame-retarding and smoke suppressing performance and mechanism of ATH/OMMT modified asphalt[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1989-1997. | |
12 | ZHAO H, LI H P, LIAO K J. Study on properties of flame retardant asphalt for tunnel[J]. Petroleum Science and Technology, 2010, 28(11): 1096-1107. |
13 | 金雷, 魏建国, 付其林, 等. DBDPE复合阻燃剂对SBS沥青性能的影响[J]. 长安大学学报(自然科学版), 2020, 40(2): 47-55, 65. |
JIN Lei, WEI Jianguo, FU Qilin, et al. Effect of DBDPE composite flame retardant on the performance of SBS asphalt[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(2): 47-55, 65. | |
14 | 颜可珍, 刘沛, 王晓亮. 基于GEP算法的沥青混合料动模量预测[J]. 建筑材料学报, 2015, 18(6): 1106-1110. |
YAN Kezhen, LIU Pei, WANG Xiaoliang. Prediction of dynamic modulus of asphalt mixture based on gene expression programming algorithm[J]. Journal of Building Materials, 2015, 18(6): 1106-1110. | |
15 | 童申家, 谢祥兵, 赵大勇, 等. 紫外光老化后沥青混合料路用性能非线性预测[J]. 建筑材料学报, 2016, 19(1): 105-110. |
TONG Shenjia, XIE Xiangbing, ZHAO Dayong, et al. Nonlinear prediction of road performance of asphalt mixture after ultraviolet aging[J]. Journal of Building Materials, 2016, 19(1): 105-110. | |
16 | 赵永祯, 李梦, 王选仓, 等. 基于聚类分析改性沥青混合料性能分级研究[J]. 建筑材料学报, 2014, 17(3): 437-445. |
ZHAO Yongzhen, LI Meng, WANG Xuancang, et al. Research on performance classification of modified asphalt mixture based on clustering algorithm[J]. Journal of Building Materials, 2014, 17(3): 437-445. | |
17 | NIAN Tengfei, LI Jinggao, LI Ping, et al. Method to predict the interlayer shear strength of asphalt pavement based on improved back propagation neural network[J]. Construction and Building Materials, 2022, 351: 128969. |
18 | OMAR Hend ALI, YUSOFF Nur Izzi Md, CEYLAN Halil, et al. Determining the water damage resistance of nano-clay modified bitumens using the indirect tensile strength and surface free energy methods[J]. Construction and Building Materials, 2018, 167: 391-402. |
19 | YANG Xiaolong, SHEN Aiqin, SU Yuxuan, et al. Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt[J]. Construction and Building Materials, 2020, 236(6): 117576. |
20 | YE Qunshan, DONG Wenzhuo, WANG Shipei, et al. Research on the rheological characteristics and aging resistance of asphalt modified with tourmaline[J]. Materials, 2019, 13(1): 69. |
21 | CHEN Qian, WANG Chaohui, QIAO Zhi, et al. Graphene/tourmaline composites as a filler of hot mix asphalt mixture: Preparation and properties[J]. Construction and Building Materials, 2020, 239: 117859. |
22 | ZHANG Xiaorui, ZHOU Xinxing, XU Xinquan, et al. Enhancing the functional and environmental properties of asphalt binders and asphalt mixtures using tourmaline anion powder modification[J]. Coatings, 2021, 11(5): 550. |
23 | LI Ping, WANG Meng, NIAN Tengfei, et al. Asphalt fume generation-enrichment device development and fume production estimation model[J]. Advances in Civil Engineering Materials, 2021, 10(1): 453-467. |
24 | 张喜军, 仝配配, 蔺习雄, 等. 基于线性振幅扫描试验评价硬质沥青的疲劳性能[J]. 材料导报, 2021, 35(18): 18083-18089. |
ZHANG Xijun, TONG Peipei, LIN Xixiong, et al. Fatigue characterization of hard petroleum asphalt based on the linear amplitude sweep test[J]. Materials Reports, 2021, 35(18): 18083-18089. |
[1] | 张书铭, 刘化章. 基于BP神经网络模型优化Fe1-x O基氨合成催化剂[J]. 化工进展, 2024, 43(3): 1302-1308. |
[2] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[3] | 林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403. |
[4] | 凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244. |
[5] | 代敏, 杨福胜, 张早校, 刘桂莲, 冯霄. 基于多策略集成优化算法的己烷油精馏过程3E多目标优化[J]. 化工进展, 2022, 41(6): 2852-2863. |
[6] | 李丹, 杨思宇, 钱宇. 耦合溴化锂吸收式制冷与有机朗肯循环的合成气深冷分离工艺[J]. 化工进展, 2022, 41(10): 5236-5246. |
[7] | 蒋宁, 赵世超, 谢小东, 范伟, 徐新杰, 徐英杰. 利用余热回收多能互补技术的原油蒸馏装置热集成系统的优化改造[J]. 化工进展, 2021, 40(2): 652-663. |
[8] | 田昌, 苏明旭, 蒋瑜, 夏多兵. 超声法在线测量烟气脱硫浆液粒度分布、密度方法和装置[J]. 化工进展, 2021, 40(12): 6516-6522. |
[9] | 张景康, 王海清, 姜巍巍, 齐心歌. 基于不可用性及表决机制的探测器优化布置[J]. 化工进展, 2020, 39(6): 2503-2509. |
[10] | 李俊杰,程婉静,梁媚,严晓辉,杨靖东,张岳玲,冯连勇,田亚峻,谢克昌. 基于熵权-层次分析法的中国现代煤化工行业可持续发展综合评价[J]. 化工进展, 2020, 39(4): 1329-1338. |
[11] | 谢小东,范伟,蒋宁,郭风元,李恩腾,徐英杰. 基于NSGA-Ⅲ算法的高维能量集成网络的优化改造[J]. 化工进展, 2020, 39(3): 872-881. |
[12] | 张莘, 高伟, 齐鸣, 余文浩, 王洪海. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(s1): 1-9. |
[13] | 白宏山,赵东亚,田群宏,王琪,陆诗建,杨忠德,杨建平. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019, 38(11): 4911-4920. |
[14] | 蒋宁,谢小东,范伟,徐英杰. 数据驱动的固定拓扑结构换热网络优化改造方法[J]. 化工进展, 2019, 38(10): 4452-4460. |
[15] | 蒋宁, 郭风元, 韩文巧, 刘华菁, 林露. 基于非逆流传热的热交换网络系统的3E优化[J]. 化工进展, 2019, 38(02): 761-771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |