化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1492-1505.DOI: 10.16085/j.issn.1000-6613.2023-0355

• 资源与环境化工 • 上一篇    

CO2原位矿化选址关键参数及其封存潜力评估研究进展

张敏1(), 叶航1(), 包琦1, 刘琦1(), 荆铁亚2, 袁浩伟2, 赵文韬2, 王晓龙2, 鲜成钢1   

  1. 1.中国石油大学(北京)非常规油气科学技术研究院,油气资源与工程全国重点实验室,北京 102249
    2.高效灵活煤电及碳捕集利用封存全国重点实验室,北京 102209
  • 收稿日期:2023-03-09 修回日期:2023-07-10 出版日期:2024-03-10 发布日期:2024-04-11
  • 通讯作者: 刘琦
  • 作者简介:张敏(1992—),女,博士,博士后,研究方向为纳米水泥、碳封存与利用。E-mail:michelletiong@cup.edu.cn
    叶航(1997—),男,博士研究生,研究方向为二氧化碳地质利用与安全封存。E-mail:yehang_cup@163.com
  • 基金资助:
    中国石油大学(北京)科研基金(ZX20200133);内蒙古自治区科技重大专项(2021ZD0020);华能清能院研究与开发基金(QNYJJ22-21);国家自然科学基金(51604288)

Review on key parameters and storage capacity potential assessment for in-situ carbon mineralization site

TIONG Michelle1(), YE Hang1(), BAO Qi1, LIU Qi1(), JING Tieya2, YUAN Haowei2, ZHAO Wentao2, WANG Xiaolong2, XIAN Chenggang1   

  1. 1.Unconventional Petroleum Research Institute, China University of Petroleum-Beijing, National Key Laboratory of Petroleum Resources and Engineering, Beijing 102249, China
    2.National Key Laboratory of High-Efficiency Flexible Coal Power Generation and Carbon Capture Utilization and Storage, Beijing 102209, China
  • Received:2023-03-09 Revised:2023-07-10 Online:2024-03-10 Published:2024-04-11
  • Contact: LIU Qi

摘要:

温室气体特别是二氧化碳的大量排放,是导致全球变暖的主要原因之一。根据国际能源署的报道,碳捕集利用和封存(CCUS)技术是缓解全球气候变化的重要措施之一,约占累计碳减排量的15%。原位矿化封存技术基于快速CO2矿化机制,以镁铁质岩石和超镁铁质岩石(玄武岩、橄榄岩等)地层为碳封存位点,利用CO2与富含Ca、Mg元素矿物的矿化反应,转变为稳定的碳酸盐,从而达到永久且高效封存CO2的目的。冰岛和美国的中试项目已经证明了该技术的可行性,但中国尚未进行相关示范项目。本文介绍了原位矿化封存技术的机理、CO2封存潜力的评估手段及其面临的风险与挑战,讨论了已开展的案例项目及其技术细节,梳理了实施该技术所必需的选址关键参数(包括源-汇距离、矿物类型、注入性、封闭性等),并基于目前研究对其前景进行展望,以期提高我国对原位矿化技术的认识和重视,为推动该领域进一步发展提供理论指导。

关键词: CO2原位矿化, CO2地质封存, 玄武岩, 选址参数, 封存潜力

Abstract:

The significant greenhouse gases emission, especially CO2 is the main cause of global warming. According to IEA report, carbon capture, utilization and sequestration (CCUS) is proposed as an effective mitigation strategy which accounts for about 15% of cumulative carbon emission reduction. The in-situ mineralization sequestration technology is based on the rapid CO2 mineralization mechanism, utilizing the formations of mafic rocks and ultramafic rocks (such as basalt and peridotite) as carbon storage sites. The mineralization reaction between CO2 and calcium- and magnesium-rich minerals is used to transform them into stable carbonates, achieving permanent and efficient CO2 sequestration. Pilot projects in Iceland and the United States have demonstrated the feasibility of this technology, but no demonstration project has been carried out in China yet. This review presents the mechanism of in-situ carbon mineralization, calculation methods for CO2 storage capacity, and current technical challenges. In addition, the conducted case studies, including their technical details are discussed, while the key parameters required for implementing this technology (include source-sink distance, mineral types, injectivity, and confinement, etc) are provided. Based on the recent research, the future prospects are made, aiming to enhance China’s understanding and attention to the in-situ carbon mineralization technology, at the same time, serving as a guideline for future implementation in China.

Key words: in-situ carbon mineralization, CO2 geological storage, basalt, site selection criterion, storage capacity

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn