化工进展 ›› 2023, Vol. 42 ›› Issue (11): 5842-5851.DOI: 10.16085/j.issn.1000-6613.2022-2330
• 材料科学与技术 • 上一篇
收稿日期:
2022-12-18
修回日期:
2023-01-13
出版日期:
2023-11-20
发布日期:
2023-12-15
通讯作者:
孙志高
作者简介:
黄志国(1994—),男,硕士研究生,研究方向为储能技术。E-mail:1178736316@qq.com。
基金资助:
Received:
2022-12-18
Revised:
2023-01-13
Online:
2023-11-20
Published:
2023-12-15
Contact:
SUN Zhigao
摘要:
防止相变材料的泄漏和提高热导率是相变材料储能的两大关键问题。本文以钛酸四丁酯(TBT)为前体,通过细乳液界面聚合法制备了nano-TiO2@n-docosane微胶囊。采用生物显微镜对其形成过程进行观察,利用扫描电子显微镜(SEM)、差示扫描量热仪(DSC)、热导率测定仪和热重分析仪对nano-TiO2@n-docosane微胶囊的性能进行了表征。研究结果表明,nano-TiO2@n-docosane微胶囊形成过程表现为纳米微胶囊数量由少变多、粒径由小变大、微观溶液界面由模糊变清晰的过程,溶液陈化放冷过程表现为由胶凝悬浮状态逐渐转变为粉末沉淀状态。nano-TiO2@n-docosane微胶囊粒径与转速显著相关,外貌形态与TBT、盐酸(HCl)和十二烷基硫酸钠(SDS)用量密切相关。纳米相变微胶囊的融化和凝固温度分别为41.3℃和42.4℃,相变焓为178J/g,包覆率和包覆效率达到70.7%和69.0%,蓄热能力为97.6%。nano-TiO2@n-docosane微胶囊平均热导率是n-docosane的215%。红外光谱测试结果表明,n-docosane和TiO2物理结合,n-docosane成功被TiO2包覆。热重分析表明TiO2形成了一个物理保护屏障,减缓了n-docosane向胶囊外的扩散。
中图分类号:
黄志国, 孙志高. 蓄热用纳米相变微胶囊制备与性能[J]. 化工进展, 2023, 42(11): 5842-5851.
HUANG Zhiguo, SUN Zhigao. Preparation and properties of nano phase change microcapsules for heat storage[J]. Chemical Industry and Engineering Progress, 2023, 42(11): 5842-5851.
名称 | 型号 | 精度 | 测量范围 |
---|---|---|---|
生物显微镜 | XSP-BM-3C | — | 40~1600倍 |
赛多利斯电子天平 | BSA224S | ±0.1mg | 0~220g |
数控超声波清洗器 | KQ100DE | — | RT+10~80℃ |
微电热恒温水槽 | THD-2015 | ±0.1℃ | -20~99℃ |
差示扫描量热仪 | NETZSCH DSC 200F3 | — | -180~725℃ |
傅里叶红外光谱仪 | Thermo Scientific Nicolet iS20 | — | 4000~400cm-1 |
真空干燥箱 | BZF-30 | ±0.5℃ | RT+2~250℃ |
扫描电子显微镜 | 蔡司Gemini300/Nova NanoSEM450 | — | — |
热导率测定仪 | DRE-Ⅲ | ≤3% | 0.005~50W/(m•K) |
表1 实验仪器
名称 | 型号 | 精度 | 测量范围 |
---|---|---|---|
生物显微镜 | XSP-BM-3C | — | 40~1600倍 |
赛多利斯电子天平 | BSA224S | ±0.1mg | 0~220g |
数控超声波清洗器 | KQ100DE | — | RT+10~80℃ |
微电热恒温水槽 | THD-2015 | ±0.1℃ | -20~99℃ |
差示扫描量热仪 | NETZSCH DSC 200F3 | — | -180~725℃ |
傅里叶红外光谱仪 | Thermo Scientific Nicolet iS20 | — | 4000~400cm-1 |
真空干燥箱 | BZF-30 | ±0.5℃ | RT+2~250℃ |
扫描电子显微镜 | 蔡司Gemini300/Nova NanoSEM450 | — | — |
热导率测定仪 | DRE-Ⅲ | ≤3% | 0.005~50W/(m•K) |
样品 | 蒸馏水/mL | 无水乙醇/mL | SDS/g | HCl/mL | n-docosane/g | TBT/g |
---|---|---|---|---|---|---|
S1 | 72.0 | 36.0 | 0.5 | 0.10 | 5.0 | 5.0 |
S2 | 72.0 | 36.0 | 0.5 | 0.10 | 5.0 | 10.0 |
S3 | 72.0 | 36.0 | 0.5 | 0.25 | 5.0 | 5.0 |
S4 | 72.0 | 36.0 | 1.0 | 0.10 | 5.0 | 5.0 |
表2 nano-TiO2@n-docosane微胶囊的制备条件
样品 | 蒸馏水/mL | 无水乙醇/mL | SDS/g | HCl/mL | n-docosane/g | TBT/g |
---|---|---|---|---|---|---|
S1 | 72.0 | 36.0 | 0.5 | 0.10 | 5.0 | 5.0 |
S2 | 72.0 | 36.0 | 0.5 | 0.10 | 5.0 | 10.0 |
S3 | 72.0 | 36.0 | 0.5 | 0.25 | 5.0 | 5.0 |
S4 | 72.0 | 36.0 | 1.0 | 0.10 | 5.0 | 5.0 |
材料 | 融化温度/℃ | 融化焓值/J·g-1 | 凝固温度/℃ | 凝固焓值/J·g-1 | 融化峰值温度/℃ | 凝固峰值温度/℃ | R/% | E/% | η/% |
---|---|---|---|---|---|---|---|---|---|
n-docosane | 42.9 | 251.6 | 42.7 | 254.15 | 45.7 | 40 | — | — | — |
TiO2@n-docosane | 41.3 | 178 | 42.4 | 171 | 44.7 | 35.4 | 70.7 | 69.0 | 97.6 |
表3 DSC参数值
材料 | 融化温度/℃ | 融化焓值/J·g-1 | 凝固温度/℃ | 凝固焓值/J·g-1 | 融化峰值温度/℃ | 凝固峰值温度/℃ | R/% | E/% | η/% |
---|---|---|---|---|---|---|---|---|---|
n-docosane | 42.9 | 251.6 | 42.7 | 254.15 | 45.7 | 40 | — | — | — |
TiO2@n-docosane | 41.3 | 178 | 42.4 | 171 | 44.7 | 35.4 | 70.7 | 69.0 | 97.6 |
1 | 王灿, 张雅欣. 碳中和愿景的实现路径与政策体系[J]. 中国环境管理, 2020, 12(6): 58-64. |
WANG Can, ZHANG Yaxin. Implementation pathway and policy system of carbon neutrality vision[J]. Chinese Journal of Environmental Management, 2020, 12(6): 58-64. | |
2 | 姜竹, 邹博杨, 丛琳, 等. 储热技术研究进展与展望[J]. 储能科学与技术, 2022, 11(9): 2746-2771. |
JIANG Zhu, ZOU Boyang, CONG Lin, et al. Recent progress and outlook of thermal energy storage technologies[J]. Energy Storage Science and Technology, 2022, 11(9): 2746-2771. | |
3 | YUAN Mengdi, XU Chao, WANG Tieying, et al. Supercooling suppression and crystallization behaviour of erythritol/expanded graphite as form-stable phase change material[J]. Chemical Engineering Journal, 2021, 413: 127394. |
4 | GUO Xi, ZHANG Shaodi, CAO Jinzhen. An energy-efficient composite by using expanded graphite stabilized paraffin as phase change material[J]. Composites Part A: Applied Science and Manufacturing, 2018, 107: 83-93. |
5 | ZHOU Sunxi, ZHANG Xuelai, LIU Sheng, et al. Performance study on expand graphite/organic composite phase change material for cold thermal energy storage[J]. Energy Procedia, 2019, 158: 5305-5310. |
6 | TAYLOR Peter G, BOLTON Ronan, STONE Dave, et al. Developing pathways for energy storage in the UK using a coevolutionary framework[J]. Energy Policy, 2013, 63: 230-243. |
7 | MASSON-DELMOTTE V, ZHAI P, PÖRTNER H O, et al. Intergovernmental panel on climate change (IPCC). Global warming of 1.5℃: an IPCC special report on the impacts of global warming of 1.5℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change[EB/OL]. Sustainable Development and Efforts to Eradicate Poverty. (2021-10-18).. |
8 | GE Zhiwei, LI Yongliang, LI Dacheng, et al. Thermal energy storage: Challenges and the role of particle technology[J]. Particuology, 2014, 15: 2-8. |
9 | DUAN Zhenya, ZHANG Zhuang, WANG Jingtao, et al. Thermal performance of structured packed bed with encapsulated phase change materials[J]. International Journal of Heat and Mass Transfer, 2020, 158: 120066. |
10 | SHIN Donghyun, BANERJEE Debjyoti. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
11 | PACHECO James E, SHOWALTER Steven K, KOLB William J. Development of a molten-salt thermocline thermal storage system for parabolic trough plants[J]. Journal of Solar Energy Engineering, 2002, 124(2): 153-159. |
12 | FARID Mohammed M, KHUDHAIR Amar M, RAZACK Siddique Ali K, et al. A review on phase change energy storage: materials and applications[J]. Energy Conversion and Management, 2004, 45(9/10): 1597-1615. |
13 | THIRUGNANAM C, KARTHIKEYAN S, KALAIMURUGAN K. Study of phase change materials and its application in solar cooker[J]. Materials Today: Proceedings, 2020, 33: 2890-2896. |
14 | HUANG Zhanhua. Research progress in organic/composite phase change materials for energy storage[J]. ES Energy & Environment, 2020, 9: 28-40. |
15 | 刘庆祎, 肖桐, 孙文杰, 等. 纳米二氧化钛强化的相变储能研究进展[J]. 化工学报, 2022, 73(5): 1863-1882. |
LIU Qingyi, XIAO Tong, SUN Wenjie, et al. Progress in the research of phase change energy storage enhanced by titanium dioxide nanoparticles[J]. CIESC Journal, 2022, 73(5): 1863-1882. | |
16 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
17 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
18 | GEORGE Mathew, PANDEY A K, RAHIM Nasrudin ABD, et al. A novel polyaniline (PANI)/paraffin wax nano composite phase change material: Superior transition heat storage capacity, thermal conductivity and thermal reliability[J]. Solar Energy, 2020, 204: 448-458. |
19 | LI Min, WU Zhishen, TAN Jinmiao. Heat storage properties of the cement mortar incorporated with composite phase change material[J]. Applied Energy, 2013, 103: 393-399. |
20 | CUI Wenlong, YUAN Yanping, SUN Liangliang, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037. |
21 | WANG Jifen, XIE Huaqing, XIN Zhong. Thermal properties of heat storage composites containing multiwalled carbon nanotubes[J]. Journal of Applied Physics, 2008, 104(11): 113537. |
22 | CHOI Da Hee, LEE Juhyuk, HONG Hiki, et al. Thermal conductivity and heat transfer performance enhancement of phase change materials (PCM) containing carbon additives for heat storage application[J]. International Journal of Refrigeration, 2014, 42: 112-120. |
23 | MYERS Philip DJr, ALAM Tanvir E, KAMAL Rajeev, et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer[J]. Applied Energy, 2016, 165: 225-233. |
24 | MADATHIL Pramod Kandoth, BALAGI Nagaraj, SAHA Priyanka, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905. |
25 | BABAPOOR Aziz, KARIMI Gholamreza. Thermal properties measurement and heat storage analysis of paraffinnanoparticles composites phase change material: Comparison and optimization[J]. Applied Thermal Engineering, 2015, 90: 945-951. |
26 | LIU Zhengxuan, YU Zhun, YANG Tingting, et al. A review on macro-encapsulated phase change material for building envelope applications[J]. Building and Environment, 2018, 144: 281-294. |
27 | PRAJAPATI Deepak G, KANDASUBRAMANIAN Balasubramanian. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
28 | CHANG Yanghui, SUN Zhigao. Synthesis and thermal properties of n-tetradecane phase change microcapsules for cold storage[J]. Journal of Energy Storage, 2022, 52: 104959. |
29 | SARI Ahmet, ALKAN Cemil, DÖĞÜŞCÜ Derya Kahraman, et al. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications[J]. Solar Energy, 2015, 115: 195-203. |
30 | 尉菁华, 刘欢, 连慧琴, 等. 棕榈酸/二氧化硅相变微胶囊的制备及性能研究[J]. 中国塑料, 2020, 34(2): 1-8. |
YU Jinghua, LIU Huan, LIAN Huiqin, et al. Preparation and performance of phase-change microcapsules based on palmitic acid core and silica shell[J]. China Plastics, 2020, 34(2): 1-8. | |
31 | GENG Lixia, WANG Shuangfeng, WANG Tingyu, et al. Facile synthesis and thermal properties of nanoencapsulated n-dodecanol with SiO2 shell as shape-formed thermal energy storage material[J]. Energy & Fuels, 2016, 30(7): 6153-6160. |
32 | Hafiz Muhammad ALI, JANJUA Muhammad Mansoor, SAJJAD Uzair, et al. A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams[J]. International Journal of Heat and Mass Transfer, 2019, 135: 649-673. |
33 | LIU Huan, WANG Xiaodong, WU Dezhen. Fabrication of graphene/TiO2/paraffin composite phase change materials for enhancement of solar energy efficiency in photocatalysis and latent heat storage[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4906-4915. |
34 | JI Wei, CHENG Xiaomin, CHEN Sihong, et al. Self-assembly fabrication of GO/TiO2@paraffin microcapsules for enhancement of thermal energy storage[J]. Powder Technology, 2021, 385: 546-556. |
35 | ZHAO Liang, WANG Hao, LUO Jie, et al. Fabrication and properties of microencapsulated n-octadecane with TiO2 shell as thermal energy storage materials[J]. Solar Energy, 2016, 127: 28-35. |
36 | ABDI Amir, IGNATOWICZ Monika, GUNASEKARA Saman Nimali, et al. Experimental investigation of thermo-physical properties of n-octadecane and n-eicosane[J]. International Journal of Heat and Mass Transfer, 2020, 161: 120285. |
37 | LIANG Shuen, LI Qianbiao, ZHU Yalin, et al. Nanoencapsulation of n-octadecane phase change material with silica shell through interfacial hydrolysis and polycondensation in miniemulsion[J]. Energy, 2015, 93: 1684-1692. |
[1] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[2] | 卜治丞, 焦波, 林海花, 孙洪源. 脉动热管计算流体力学模型与研究进展[J]. 化工进展, 2023, 42(8): 4167-4181. |
[3] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[4] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[5] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[6] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
[7] | 吴展华, 盛敏. 绝热加速量热仪在反应安全风险评估应用中的常见问题[J]. 化工进展, 2023, 42(7): 3374-3382. |
[8] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[9] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[10] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[11] | 杨扬, 孙志高, 李翠敏, 李娟, 黄海峰. 静态条件下表面活性剂OP-13促进HCFC-141b水合物生成[J]. 化工进展, 2023, 42(6): 2854-2859. |
[12] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[13] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[14] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[15] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |