1 |
SOLOMON S, PLATTNER G K, KNUTTI R, et al. Irreversible climate change due to carbon dioxide emissions[J]. Proceedings of the National Academy of Sciences, 2009, 106(6): 1704-1709.
|
2 |
辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J]. 中国电机工程学报, 2022, 42(19): 6919-6930.
|
|
XIN Baoan, CHEN Mei, ZHAO Peng, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China[J]. Proceedings of the CSEE, 2022, 42(19): 6919-6930.
|
3 |
张贤, 李阳, 马乔, 等. 我国碳捕集利用与封存技术发展研究[J]. 中国工程科学, 2021, 23(6): 70-80.
|
|
ZHANG Xian, LI Yang, MA Qiao, et al. Development of carbon capture, utilization and storage technology in China[J]. Strategic Study of CAE, 2021, 23(6): 70-80.
|
4 |
Change Intergovernmental Panel on Climate Change. Ipcc[J]. Climate Change, 2014.
|
5 |
国家科学技术部社会发展科技司, 中国21世纪议程管理中心. 中国碳捕集利用与封存技术发展路线图(2019)[R]. 2019.
|
|
Department of Social Development Science and Technology, Ministry of Science and Technology and Management Centre of Agendum in the 21st Century. China's carbon capture, utilization and storage technology development roadmap (2019)[R]. 2019.
|
6 |
MONDAL M K, BALSORA H K, VARSHNEY P. Progress and trends in CO2 capture/separation technologies: A review[J]. Energy, 2012, 46(1): 431-441.
|
7 |
吴彬, 黄坤荣, 刘子健. 化学吸收法捕集二氧化碳研究进展[J]. 广州化工, 2017, 45(11): 11-14.
|
|
WU Bin, HUANG Kunrong, LIU Zijian. Research progress on carbon dioxide capture by chemical absorption[J]. Guangzhou Chemical Industry, 2017, 45(11): 11-14.
|
8 |
王继锋. 变温吸附在焦炉煤气净化中的应用[J]. 煤炭与化工, 2018, 41(12): 130-132.
|
|
WANG Jifeng. Application of TSA in purge of coke oven gas[J]. Coal and Chemical Industry, 2018, 41(12): 130-132.
|
9 |
高腾飞, 常超, 杨阳, 等. 碳捕集变压吸附技术工艺及吸附材料研究进展[J]. 辽宁化工, 2020, 49(11): 1389-1394.
|
|
GAO Tengfei, CHANG Chao, YANG Yang, et al. Research progress of pressure swing adsorption technology and adsorption materials for carbon capture[J]. Liaoning Chemical Industry, 2020, 49(11): 1389-1394.
|
10 |
MOHSEN K, MOHAMMAD S, JOSÉ A, et al. Biomass/Biochar carbon materials for CO2 capture and sequestration by cyclic adsorption processes: A review and prospects for future directions[J]. Journal of CO2 Utilization, 2022, 57: 101890.
|
11 |
KUMAR S, SRIVASTAVA R, KOH J. Utilization of zeolites as CO2 capturing agents: Advances and future perspectives[J]. Journal of CO2 Utilization, 2021, 41: 101251.
|
12 |
耿一琪, 郭彦霞, 樊飙, 等. CaO基吸附剂捕集CO2及其抗烧结改性研究进展[J]. 燃料化学学报, 2021, 49(7): 998-1013.
|
|
GENG Yiqi, GUO Yanxia, FAN Biao, et al. Research progress of calcium-based adsorbents for CO2 capture and anti-sintering modification[J]. Journal of Fuel Chemistry and Technology, 2021, 49(7): 998-1013.
|
13 |
何凯武, 唐思扬, 刘长军, 等. 有机胺功能化介孔固体吸附剂吸附分离CO2性能研究[J]. 化工学报, 2018, 69(9): 3887-3895.
|
|
HE Kaiwu, TANG Siyang, LIU Changjun, et al. Performance of amine functionalized mesoporous adsorbents for CO2 adsorption[J]. CIESC Journal, 2018, 69(9): 3887-3895.
|
14 |
鲁雪婷, 蒲彦锋, 李磊, 等. 氨基修饰的金属有机框架Cu3(BTC)2的制备及其CO2吸附性能研究[J]. 燃料化学学报, 2019, 47(3): 338-343.
|
|
LU Xueting, PU Yanfeng, LI Lei, et al. Preparation of metal-organic frameworks Cu3(BTC)2 with amino-functionalization for CO2 adsorption[J]. Journal of Fuel Chemistry and Technology, 2019, 47(3): 338-343.
|
15 |
OZDEMIR J, MOSLEH I, ABOLHASSANI M, et al. Covalent organic frameworks for the capture, fixation, or reduction of CO2 [J]. Frontiers in Energy Research, 2019, 7: 77.
|
16 |
刘鑫博, 唐建峰, 胡苏阳, 等. 5种沸石分子筛的吸附脱碳对比实验[J]. 煤气与热力, 2021, 41(9): 19-24, 29, 45-46.
|
|
LIU Xinbo, TANG Jianfeng, HU Suyang, et al. Comparative experiment on adsorption and decarbonization of five kinds of zeolite molecular sieves[J]. Gas & Heat, 2021, 41(9): 19-24, 29, 45-46.
|
17 |
王烁天, 李冠泓, 杨月峰, 等. 分子筛对二氧化碳的穿透吸附性能测定[J]. 精细石油化工, 2022, 39(3): 58-62.
|
|
WANG Shuotian, LI Guanhong, YANG Yuefeng, et al. Penetrating adsorption property of carbon dioxide for zeolites[J]. Speciality Petrochemicals, 2022, 39(3): 58-62.
|
18 |
CHUE K T, KIM J N, YOO Y J, et al. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption[J]. Industrial & Engineering Chemistry Research, 1995, 34(2): 591-598.
|
19 |
MULGUNDMATH V P, TEZEL F H, SAATCIOGLU T, et al. Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite[J]. The Canadian Journal of Chemical Engineering, 2012, 90(3): 730-738.
|
20 |
胡苏阳, 刘鑫博, 唐建峰, 等. 13X沸石分子筛对低浓度CO2动态吸附[J]. 化工进展, 2022, 41(1): 153-160.
|
|
HU Suyang, LIU Xinbo, TANG Jianfeng, et al. Dynamic adsorption of low concentration CO2 over 13X zeolite[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 153-160.
|
21 |
PRODINGER S, VEMURI R S, VARGA T, et al. Impact of chabazite SSZ-13 textural properties and chemical composition on CO2 adsorption applications[J]. New Journal of Chemistry, 2016, 40(5): 4375-4385.
|
22 |
王煜瑶, 张强, 于吉红. 多级孔NaX分子筛的合成及CO2吸附性能[J]. 高等学校化学学报, 2020, 41(4): 616-622.
|
|
WANG Yuyao, ZHANG Qiang, YU Jihong. Synthesis of Hierarchical NaX zeolite and Its CO2 adsorption performance[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 616-622.
|
23 |
YANG S T, KIM J, AHN W S. CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions[J]. Microporous and Mesoporous Materials, 2010, 135(1-3): 90-94.
|
24 |
BOWER J K, BARPAGA D, PRODINGER S, et al. Dynamic adsorption of CO2/N2 on cation-exchanged chabazite SSZ-13: a breakthrough analysis[J]. ACS Applied Materials & Interfaces, 2018, 10(17): 14287-14291.
|
25 |
WALTON K S, ABNEY M B, DOUGLAS LEVAN M. CO2 adsorption in Y and X zeolites modified by alkali metal cation exchange[J]. Microporous and Mesoporous Materials, 2006, 91(1-3): 78-84.
|
26 |
SUN M, GU Q, HANIF A, et al. Transition metal cation-exchanged SSZ-13 zeolites for CO2 capture and separation from N2 [J]. Chemical Engineering Journal, 2019, 370: 1450-1458.
|
27 |
REMY T, GOBECHIYA E, DANACI D, et al. Biogas upgrading through kinetic separation of carbon dioxide and methane over Rb- and Cs-ZK-5 zeolites[J]. RSC Advances, 2014, 4(107): 62511-62524.
|
28 |
HUDSON M R, QUEEN W L, MASON J A, et al. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134(4): 1970-1973.
|
29 |
LEE C H, HYEON D H, JUNG H, et al. Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites[J]. Journal of Industrial and Engineering Chemistry, 2015, 23: 251-256.
|
30 |
LIANG W, HUANG J, XIAO P, et al. Amine-immobilized HY zeolite for CO2 capture from hot flue gas[J]. Chinese Journal of Chemical Engineering, 2022, 43: 335-342.
|
31 |
MADDEN D, CURTIN T. Carbon dioxide capture with amino-functionalised zeolite-β: A temperature programmed desorption study under dry and humid conditions[J]. Microporous and Mesoporous Materials, 2016, 228: 310-317.
|
32 |
TIEN H N, SUNGJUNE K, MINYOUNG Y, et al. Hierarchical zeolites with amine-functionalized mesoporous domains for carbon dioxide capture[J]. ChemSusChem, 2016, 9: 455-461.
|
33 |
HYUNCHUL J, SUNBIN J, DONG HYUN J, et al. Effect of crosslinking on the CO2 adsorption of polyethyleneimine-impregnated sorbents[J]. Chemical Engineering Journal, 2017, 307: 836-844.
|
34 |
KIM C, CHO H S, CHANG S, et al. An ethylenediamine-grafted Y zeolite: A highly regenerable carbon dioxide adsorbent via temperature swing adsorption without urea formation [J]. Energy & Environmental Science, 2016, 9(5): 1803-1811.
|
35 |
MINJAE K, JAE W L, SEONGGON K, et al. CO2 adsorption on zeolite 13X modified with hydrophobic octadecyltrimethoxysilane for indoor application[J]. Journal of Cleaner Production, 2022, 337: 130597.
|
36 |
DONG-IL K, JEONG-CHUL K, HAESOL L, et al. Engineering micropore walls of beta zeolites by post-functionalization for CO2 adsorption performance screening under humid conditions[J]. Chemical Engineering Journal, 2022, 427: 131461.
|
37 |
MANABU M, SHUMPEI O, KODIA K, et al. High water tolerance of a core-shell-structured zeolite for CO2 adsorptive separation under wet conditions[J]. ChemSusChem, 2018, 11: 1756-1760.
|
38 |
GAO F, LI Y, BIAN Z, et al. Dynamic hydrophobic hindrance effect of zeolite@zeolitic imidazolate framework composites for CO2 capture in the presence of water[J]. Journal of Material Chemistry A, 2015, 3: 8091-8097.
|
39 |
SHUVO J D, CHUTHARAT K, ZHEN H L, et al. CO2 capture from humid flue gases and humid atmosphere using a microporous coppersilicate[J]. Science, 2015, 350: 302-306.
|
40 |
SHANG J, LI G, SINGH R, et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites [J]. Journal of the American Chemical Society, 2012, 134(46): 19246-19253.
|
41 |
SHANG J, LI G, RANJEET S, et al. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite[J]. Journal of Physical Chemistry C, 2013, 117: 12841-12847.
|
42 |
DU T, FANG X, LIU L, et al. An optimal trapdoor zeolite for exclusive admission of CO2 at industrial carbon capture operating temperatures[J]. Chemical Communications, 2018, 54: 3134-3137.
|
43 |
LI G, SHANG J, GU Q, et al. Temperature-regulated guest admission and release in microporous materials[J]. Nature Communications, 2017, 8: 15777.
|
44 |
LOZINSKA M M, MOWAT J P S, WEIGHT P A, et al. Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite Rho[J]. Chemistry of Materials, 2014, 26: 2052-2061.
|
45 |
COUDERT F, KOHEN D. Molecular insight into CO2 “trapdoor” adsorption in zeolite Na-RHO[J]. Chemistry of Materials, 2017, 29: 2724-2730.
|