化工进展 ›› 2022, Vol. 41 ›› Issue (4): 2150-2160.DOI: 10.16085/j.issn.1000-6613.2021-0810
王思怡(), 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春(
)
收稿日期:
2021-04-16
修回日期:
2021-05-22
出版日期:
2022-04-23
发布日期:
2022-04-25
通讯作者:
李先春
作者简介:
王思怡(1987—),女,博士研究生,研究方向为固体废弃物处理技术与理论。E-mail:基金资助:
WANG Siyi(), LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun(
)
Received:
2021-04-16
Revised:
2021-05-22
Online:
2022-04-23
Published:
2022-04-25
Contact:
LI Xianchun
摘要:
城市污泥制备高品质合成燃气,是减小环境污染、提高废弃物附加值、实现能源化利用的有效方法之一。本文采用介质阻挡放电低温等离子体(NTP-DBD)技术,利用热重-质谱联用(GT-MS)对城市污泥及其模型化合物亮氨酸、葡萄糖的气化特性进行了研究。重点考察了反应气氛、放电频率对合成气体分布情况的影响,并利用傅里叶变换红外光谱(FTIR)、扫描电镜(SEM)对固体产物结构进行了表征。结果表明,在Ar气氛下,较热重热解污泥,NTP-DBD气化污泥产生合成气的浓度提升了1.84%。放电频率由10.5kHz调至9.2kHz时,输出电压提高了36%,并且污泥气化效率提高了5倍;当工作气氛为CO2时,气化效率占污泥挥发分含量的74.86%。相较于葡萄糖而言,模型化合物亮氨酸气化产生的H2、CO、CO2、CH4较多,说明污泥中蛋白质对污泥气化的气体产物贡献较大。与传统热解气化结果相比,NTP-DBD气化技术能够有效提高合成气产量、降低高温操作难度且避免污泥气化过程中二英等剧毒类物质产生。
中图分类号:
王思怡, 李月慧, 葛玉洁, 王焕然, 赵璐璐, 李先春. NTP-DBD气化城市污泥及其模型化合物: 气氛对产物分布及特性的影响[J]. 化工进展, 2022, 41(4): 2150-2160.
WANG Siyi, LI Yuehui, GE Yujie, WANG Huanran, ZHAO Lulu, LI Xianchun. Gasification of sewage sludge and its model compounds with NTP-DBD: effect of atmosphere on product distribution and properties[J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2150-2160.
工业分析(质量分数)/% | 元素分析(质量分数)/% | |||||||
---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | Cd | Hd | Od① | Nd | Sd | |
38.38 | 3.65 | 57.97 | 17.03 | 3.08 | 16.83 | 2.90 | 2.19 |
表1 污泥工业分析及元素分析
工业分析(质量分数)/% | 元素分析(质量分数)/% | |||||||
---|---|---|---|---|---|---|---|---|
Vd | FCd | Ad | Cd | Hd | Od① | Nd | Sd | |
38.38 | 3.65 | 57.97 | 17.03 | 3.08 | 16.83 | 2.90 | 2.19 |
气氛 | 放电频率 /kHz | 放电功率P/W | 能量密度SED /J·L-1 | 输出电压 /kV | 气化率 /% | 最高温度 /℃ |
---|---|---|---|---|---|---|
Ar | 10.5 | 6.09 | 9128.38 | 16.2 | 3.75 | 92 |
Ar | 9.2 | 9.25 | 13881.25 | 22.0 | 18.77 | 160 |
N2 | 10.5 | 12.33 | 18489.99 | 24.0 | 22.79 | 217 |
CO2 | 10.5 | 13.06 | 20406.43 | 24.4 | 28.73 | 228 |
表2 不同气氛条件对各种参数的影响
气氛 | 放电频率 /kHz | 放电功率P/W | 能量密度SED /J·L-1 | 输出电压 /kV | 气化率 /% | 最高温度 /℃ |
---|---|---|---|---|---|---|
Ar | 10.5 | 6.09 | 9128.38 | 16.2 | 3.75 | 92 |
Ar | 9.2 | 9.25 | 13881.25 | 22.0 | 18.77 | 160 |
N2 | 10.5 | 12.33 | 18489.99 | 24.0 | 22.79 | 217 |
CO2 | 10.5 | 13.06 | 20406.43 | 24.4 | 28.73 | 228 |
气氛 | 放电频率 /kHz | 放电功率P /W | 能量密度SED /J·L-1 | 输出电压 /kV | 最高温度 /℃ |
---|---|---|---|---|---|
Ar | 10.5 | 6.77/5.95 | 10149/11919 | 16.0/16.8 | 136/137 |
Ar | 9.2 | 12.28/11.27 | 18430/16912 | 22.4/22.8 | 167/181 |
N2 | 10.5 | 15.89/13.78 | 23841/20676 | 24.8/24.4 | 199/206 |
CO2 | 10.5 | 16.04/15.88 | 24060/23816 | 25.6/25.6 | 218/213 |
表3 亮氨酸/葡萄糖在不同条件下对各种参数的影响
气氛 | 放电频率 /kHz | 放电功率P /W | 能量密度SED /J·L-1 | 输出电压 /kV | 最高温度 /℃ |
---|---|---|---|---|---|
Ar | 10.5 | 6.77/5.95 | 10149/11919 | 16.0/16.8 | 136/137 |
Ar | 9.2 | 12.28/11.27 | 18430/16912 | 22.4/22.8 | 167/181 |
N2 | 10.5 | 15.89/13.78 | 23841/20676 | 24.8/24.4 | 199/206 |
CO2 | 10.5 | 16.04/15.88 | 24060/23816 | 25.6/25.6 | 218/213 |
1 | RAHEEM A, SIKARWAR V S, HE J, et al. Opportunities and challenges in sustainable treatment and resource reuse of sewage sludge: a review[J]. Chemical Engineering Journal, 2018, 337: 616-641. |
2 | 中国环保产业协会. 中国环保产业发展状况报告(2018)[EB/OL]. [2019-01-23]. . |
China Association of Environmental Protection Industry. A report on the development of environmental protection industry in China(2018)[EB/OL].[2019-01-23].. | |
3 | WANG C Q, WANG W L, LIN L T, et al. A stepwise microwave synergistic pyrolysis approach to produce sludge-based biochars: feasibility study simulated by laboratory experiments[J]. Fuel, 2020, 272: 117628. |
4 | NAQVI S R, TARIQ R, HAMEED Z, et al. Pyrolysis of high-ash sewage sludge: thermo-kinetic study using TGA and artificial neural networks[J]. Fuel, 2018, 233: 529-538. |
5 | KOENIG A, KAY J N, WAN I M. Physical properties of dewatered wastewater sludge for landfilling[J]. Water Science and Technology, 1996, 34(3/4): 533-540. |
6 | 杨明沁, 解立平, 岳俊楠, 等. 污水污泥气化焦油热解特性的研究[J]. 化工进展, 2015, 34(5): 1472-1478. |
YANG Mingqin, XIE Liping, YUE Junnan, et al. Study on the pyrolysis properties of the tars from sewage sludge gasification[J]. Chemical Industry and Engineering Progress, 2015, 34(5): 1472-1478. | |
7 | BARRY D, BARBIERO C, BRIENS C, et al. Pyrolysis as an economical and ecological treatment option for municipal sewage sludge[J]. Biomass and Bioenergy, 2019, 122: 472-480. |
8 | BECKINGHAUSEN A, REYNDERS J, MERCKEL R, et al. Post-pyrolysis treatments of biochars from sewage sludge and A. Mearnsii for ammonia (NH4-N) recovery[J]. Applied Energy, 2020, 271: 115212. |
9 | BAO D D, LI Z W, LIU X, et al. Biochar derived from pyrolysis of oily sludge waste: structural characteristics and electrochemical properties[J]. Journal of Environmental Management, 2020, 268: 110734. |
10 | SONG Y Y, HU J W, LIU J Y, et al. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms[J]. Journal of Hazardous Materials, 2020, 400: 123190. |
11 | FURNESS D T, HOGGETT L A, JUDD S J. Thermochemical treatment of sewage sludge[J]. Water and Environment Journal, 2000, 14(1): 57-65. |
12 | LIU Y, RAN C M, SIYAL A A, et al. Comparative study for fluidized bed pyrolysis of textile dyeing sludge and municipal sewage sludge[J]. Journal of Hazardous Materials, 2020, 396: 122619. |
13 | MANARA P, ZABANIOTOU A. Towards sewage sludge based biofuels via thermochemical conversion: a review[J]. Renewable and Sustainable Energy Reviews, 2012, 16(5): 2566-2582. |
14 | 屈广周, 李杰, 梁东丽, 等. 低温等离子体技术处理难降解有机废水的研究进展[J]. 化工进展, 2012, 31(3): 662-670. |
QU Guangzhou, LI Jie, LIANG Dongli, et al. Research progress in organic wastewater treatment by low-temperature plasma discharge technology[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 662-670. | |
15 | HLINA M, HRABOVSKY M, KAVKA T, et al. Production of high quality syngas from argon/water plasma gasification of biomass and waste[J]. Waste Management, 2014, 34(1): 63-66. |
16 | SPYROU N, AMORIM J D. Atmospheric pressure DBD low-temperature plasma reactor for the treatment of sugarcane bagasse[J]. IEEE Transactions on Plasma Science, 2019, 47(3): 1583-1592. |
17 | DU C M, WU J, MA D Y, et al. Gasification of corn cob using non-thermal arc plasma[J]. International Journal of Hydrogen Energy, 2015, 40(37): 12634-12649. |
18 | 孙世翼. 放电等离子体强化处理污泥减量及重金属去除[D]. 兰州: 西北师范大学, 2018. |
SUN Shiyi. Discharge plasma enhanced sludge reduction and heavy metal removal[D]. Lanzhou: Northwest Normal University, 2018. | |
19 | 郑燕, 李明, 朱锡锋. 城市污水污泥催化快速热解制备芳香烃和烯烃[J]. 化工学报, 2016, 67(11): 4802-4807. |
ZHENG Yan, LI Ming, ZHU Xifeng. Fast catalytic pyrolysis of sewage sludge to produce aromatic hydrocarbons and olefins[J]. CIESC Journal, 2016, 67(11): 4802-4807. | |
20 | CHEN S S, DONG B, DAI X H, et al. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Management, 2019, 88: 309-318. |
21 | SUBRAHMANYAM P V R, AN C, SASTRY E, et al. Amino acids in sewage sludges[J]. Journal (Water Pollution Control Federation), 1960, 32(4): 344-350. |
22 | 张军. 微波热解污水污泥过程中氮转化途径及调控策略[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
ZHANG Jun. Nitrogen conversion and control of nitrogen-containing compounds during microwave pyrolysis of sewage sludge[D]. Harbin: Harbin Institute of Technology, 2013. | |
23 | AZADI P, AFIF E, FOROUGHI H, et al. Catalytic reforming of activated sludge model compounds in supercritical water using nickel and ruthenium catalysts[J]. Applied Catalysis B: Environmental, 2013, 134/135: 265-273. |
24 | WANG C Y, FAN Y J, HORNUNG U, et al. Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: effect of organic matter composition and experiments with model compounds[J]. Journal of Cleaner Production, 2020, 242: 118586. |
25 | WEI F, CAO J P, ZHAO X Y, et al. Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: a study of sewage sludge and model amino acids[J]. Fuel, 2018, 218: 148-154. |
26 | 宋长忠, 方梦祥, 余春江, 等. 杉木热解及燃烧特性热天平模拟试验研究[J]. 燃料化学学报, 2005, 33(1): 68-73. |
SONG Changzhong, FANG Mengxiang, YU Chunjiang, et al. Study on the characteristics of fir pyrolysis and combustion in thermal balance for simulating typical fire condition[J]. Journal of Fuel Chemistry and Technology, 2005, 33(1): 68-73. | |
27 | YIN Q Q, LIU M T, REN H P. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water[J]. Journal of Environmental Management, 2019, 249: 109410. |
28 | MANYÀ J J. Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs[J]. Environmental Science & Technology, 2012, 46(15): 7939-7954. |
29 | AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. |
30 | WESENBEECK S VAN, PRINS W, RONSSE F, et al. Sewage sludge carbonization for biochar applications. Fate of heavy metals[J]. Energy & Fuels, 2014, 28(8): 5318-5326. |
31 | 左薇. 污水污泥微波热解制取燃料及微晶玻璃工艺与机制研究[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
ZUO Wei. Research on utilization of sewage sludge to produce fuel and glass-ceramics by microwave pyrolysis[D]. Harbin: Harbin Institute of Technology, 2011. | |
32 | 于跃芹, 刘永军. 有机化学[M]. 2版. 北京: 科学出版社, 2018. |
YU Yueqin, LIU Yongjun. Organic chemistry[M]. 2nd ed. Beijing: Science Press, 2018. |
[1] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[2] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[3] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[4] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[5] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[6] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[7] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[8] | 杨子育, 朱玲, 王文龙, 于超凡, 桑义敏. 阴燃法处理含油污泥的研究及应用进展[J]. 化工进展, 2023, 42(7): 3760-3769. |
[9] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[10] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[11] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[12] | 修浩然, 王云刚, 白彦渊, 邹立, 刘阳. 准东煤/市政污泥混燃燃烧特性及灰熔融行为分析[J]. 化工进展, 2023, 42(6): 3242-3252. |
[13] | 詹咏, 王慧, 韦婷婷, 朱星宇, 王先恺, 陈思思, 董滨. Mn2+强化臭氧调理对生物处理工艺的污泥原位减量效果[J]. 化工进展, 2023, 42(6): 3253-3260. |
[14] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[15] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 474
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 336
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |