化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1224-1231.DOI: 10.16085/j.issn.1000-6613.2023-0417

• 能源加工与技术 • 上一篇    

具有高浓度氨腔室的立式热再生氨电池性能特性

卢志强1,2(), 石雨1,2, 陈鹏宇1,2, 张亮1,2(), 李俊1,2, 付乾1,2, 朱恂1,2, 廖强1,2   

  1. 1.重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400030
    2.重庆大学工程热物理研究所,重庆 400030
  • 收稿日期:2023-03-20 修回日期:2023-08-13 出版日期:2024-03-10 发布日期:2024-04-11
  • 通讯作者: 张亮
  • 作者简介:卢志强(1996—),男,硕士研究生,研究方向为热再生电池。E-mail:luzhiqiang@cqu.edu.cn
  • 基金资助:
    国家自然科学基金创新研究项目(52021004);国家自然科学基金面上项目(51976018);重庆市自然科学基金面上项目(CSTB2022NSCQ-MSX1596);重庆归国留学人员科研基金(cx2021088)

Performance of a vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber

LU Zhiqiang1,2(), SHI Yu1,2, CHEN Pengyu1,2, ZHANG Liang1,2(), LI Jun1,2, FU Qian1,2, ZHU Xun1,2, LIAO Qiang1,2   

  1. 1.Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
    2.Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
  • Received:2023-03-20 Revised:2023-08-13 Online:2024-03-10 Published:2024-04-11
  • Contact: ZHANG Liang

摘要:

热再生电池(thermally regenerative ammonia-based battery,TRAB)可有效地将低温热能转化为电能,但其较为严重的氨渗透现象严重影响电池的产电稳定性。本文通过可视化证明了TRAB阳极氨与电解液的自分层现象,基于此构建了一种具有高浓度氨腔室的立式热再生氨电池,通过构建高浓度氨腔室和阳极氨传输阻挡层来调控氨分布,从而缓解电池中氨渗透过程。研究结果表明,与常规结构的热再生氨电池相比,具有氨腔室的热再生电池通过调控阳极氨分布解决了氨渗透的问题,在较高氨浓度(6mol/L)条件下获得了更高的输出功率、产电量以及更稳定的产电性能。此外,多孔泡沫铜阳极可以阻挡氨向下传输,进一步缓解氨渗透。具有合适孔隙密度(80PPI)的多孔电极在获得较大反应面积的同时保证了其内部良好的物质传输,使电池获得最佳的输出功率(10.8mW)。

关键词: 热再生氨电池, 高浓度氨腔室, 产电稳定性, 最大输出功率, 氨渗透

Abstract:

Thermally regenerative ammonia-based battery (TRAB) can effectively convert low-temperature thermal energy into electricity, but its serious ammonia crossover phenomenon seriously affects the power production stability of the battery. A vertical thermally regenerative ammonia-based battery with a high-concentration ammonia chamber (TRAB-C) was developed based on the phenomenon of ammonia crossover and stratification in this study. The construction of high-concentration ammonia chamber and the block layer of ammonia transfer was applied to adjust ammonia distribution and then alleviate ammonia crossover. At a higher ammonia concentration (≥6mol/L), TRAB-C obtained higher output power, higher total charge, and more stable power generation capacity than a TRAB with a conventional structure because it solved the ammonia crossover by regulating the distribution of ammonia concentration in the anode. In addition, the porous copper foam anode could block the downward transport of ammonia to alleviate ammonia crossover further. A porous electrode with appropriate pore density (80PPI) induced a large electrode surface area and favorable mass transfer inside the electrode, contributing to the maximum power (10.8mW) of TRAB-C.

Key words: thermally regenerative ammonia-based battery, high-concentration ammonia chamber, power generation stability, maximum power, ammonia crossover

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn