1 |
王子宗, 王基铭, 高立兵. 石化工业软件分类及自主工业软件成熟度分析[J]. 化工进展, 2021, 40(4): 1827-1836.
|
|
WANG Zizong, WANG Jiming, GAO Libing. Classification and maturity analysis on petrochemical industrial software[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1827-1836.
|
2 |
GRIEVES Michael W. Product lifecycle management: The new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2): 71.
|
3 |
苗田, 张旭, 熊辉, 等. 数字孪生技术在产品生命周期中的应用与展望[J]. 计算机集成制造系统, 2019, 25(6): 1546-1558.
|
|
MIAO Tian, ZHANG Xu, XIONG Hui, et al. Applications and expectation of digital twin in product lifecycle[J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1546-1558.
|
4 |
林智成. 数字孪生技术框架及其在制造业中的应用[J]. 工业控制计算机, 2020, 33(6): 129-131, 133.
|
|
LIN Zhicheng. Digital twins technology framework and its applications in manufacturing industry[J]. Industrial Control Computer, 2020, 33(6): 129-131, 133.
|
5 |
SHANKAR Narasimhan, CORNELIUS Jordache. Data reconciliation and gross error detection[M]. Gulf Professional Publishing, 1999:142-173.
|
6 |
XIE Sen, YANG Chunhua, WANG Xiaoli, et al. A data-driven adaptive multivariate steady state detection strategy for the evaporation process of the sodium aluminate solution[J]. Journal of Process Control, 2018, 68: 145-159.
|
7 |
WANG Zan, WANG Xianpeng. Multiobjective multifactorial operation optimization for continuous annealing production process[J]. Industrial & Engineering Chemistry Research, 2019, 58(41): 19166-19178.
|
8 |
WANG Yalin, PAN Zhuofu, YUAN Xiaofeng, et al. A novel deep learning based fault diagnosis approach for chemical process with extended deep belief network[J]. ISA Transactions, 2020, 96: 457-467.
|
9 |
YUAN Xiaofeng, Chen OU, WANG Yalin, et al. Deep quality-related feature extraction for soft sensing modeling: A deep learning approach with hybrid VW-SAE[J]. Neurocomputing, 2020, 396: 375-382.
|
10 |
KUEHN D R, DAVIDSON H. Computer control Ⅱ. Mathematics of control[J]. Chemical Engineering Progress, 1961, 57(6): 44-47.
|
11 |
ZHOU Lingke, SU Hongye, CHU Jian. A new method to solve robust data reconciliation in nonlinear process[J]. Chinese Journal of Chemical Engineering, 2006, 14(3): 357-363.
|
12 |
CROWE Cameron M. Recursive identification of gross errors in linear data reconciliation[J]. AIChE Journal, 1988, 34(4): 541-550.
|
13 |
Mabel SÁNCHEZ, ROMAGNOLI José. Use of orthogonal transformations in data classification-reconciliation[J]. Computers & Chemical Engineering, 1996, 20(5): 483-493.
|
14 |
ZHANG Zhengjiang, CHUANG Yingyu, CHEN Junghui. Methodology of data reconciliation and parameter estimation for process systems with multi-operating conditions[J]. Chemometrics and Intelligent Laboratory Systems, 2014, 137: 110-119.
|
15 |
MARTINEZ PRATA Diego, SCHWAAB Marcio, LUIS LIMA Enrique, et al. Simultaneous robust data reconciliation and gross error detection through particle swarm optimization for an industrial polypropylene reactor[J]. Chemical Engineering Science, 2010, 65(17): 4943-4954.
|
16 |
CHEBEIR J, WEBB Z T, ROMAGNOLI J A. An environment for topology analysis and data reconciliation of the pre-heat train in an industrial refinery[J]. Applied Thermal Engineering, 2019, 147: 623-635.
|
17 |
VASEBI Amir, Éric POULIN, HODOUIN Daniel. Dynamic data reconciliation in mineral and metallurgical plants[J]. Annual Reviews in Control, 2012, 36(2): 235-243.
|
18 |
KHODADADI Hossein, Hooshang JAZAYERI-RAD. Applying a dual extended Kalman filter for the nonlinear state and parameter estimations of a continuous stirred tank reactor[J]. Computers & Chemical Engineering, 2011, 35(11): 2426-2436.
|
19 |
PRAKASH J, HUANG Biao, SHAH Sirish L. Recursive constrained state estimation using modified extended Kalman filter[J]. Computers & Chemical Engineering, 2014, 65: 9-17.
|
20 |
LEIBMAN M J, EDGAR T F, LASDON L S. Efficient data reconciliation and estimation for dynamic processes using nonlinear programming techniques[J]. Computers & Chemical Engineering, 1992, 16(10/11): 963-986.
|
21 |
GANDHI Mital A, MILI Lamine. Robust Kalman filter based on a generalized maximum-likelihood-type estimator[J]. IEEE Transactions on Signal Processing, 2010, 58(5): 2509-2520.
|
22 |
FUENTE M J, GUTIERREZ G, GOMEZ E, et al. Gross error management in data reconciliation[J]. IFAC-PapersOnLine, 2015, 48(8): 623-628.
|
23 |
LLANOS Claudia E, SANCHÉZ Mabel C, MARONNA Ricardo A. Robust estimators for data reconciliation[J]. Industrial & Engineering Chemistry Research, 2015, 54(18): 5096-5105.
|
24 |
XIE Sen, YANG Chunhua, YUAN Xiaofeng, et al. A novel robust data reconciliation method for industrial processes[J]. Control Engineering Practice, 2019, 83: 203-212.
|
25 |
VALLERIO Mattia, TELEN Dries, CABIANCA Lorenzo, et al. Robust multi-objective dynamic optimization of chemical processes using the Sigma Point method[J]. Chemical Engineering Science, 2016, 140: 201-216.
|
26 |
LI Yue, YANG Zhenning, DENG Xianghui, et al. A mechanism-data hybrid-driven framework for identifying dynamic characteristic of actual chemical processes[J]. Chemical Engineering Research and Design, 2023, 199: 115-129.
|
27 |
LI Yue, HU Lijuan, LI Ning, et al. A light attention-mixed-base deep learning architecture toward process multivariable modeling and knowledge discovery[J]. Computers & Chemical Engineering, 2023, 174: 108259.
|