化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2233-2244.DOI: 10.16085/j.issn.1000-6613.2022-1321
收稿日期:
2022-07-14
修回日期:
2022-09-12
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
李艳
作者简介:
凌山(1998—),男,硕士研究生,研究方向为化工分离过程。E-mail:lingshan_tian@139.com。
基金资助:
LING Shan(), LIU Juming, ZHANG Qiancheng, LI Yan()
Received:
2022-07-14
Revised:
2022-09-12
Online:
2023-05-10
Published:
2023-06-02
Contact:
LI Yan
摘要:
模拟移动床技术具有产率高、纯度高、过程连续性等优点,适用于多组分体系及各组分性质比较接近的难分离体系,其过程设计和优化工作一直是研究的重点和难点。本文首先对模拟移动床分离机理及其各种变型进行了介绍,其中重点阐述了目前应用广泛的顺序式模拟移动床技术的分离模式和优越性能。在此基础上,总结并分析了模拟移动床领域的各种优化方法和研究进展。从传统的三角形理论开始,总结归纳了三角形理论应用体系,指出其重要地位及局限性。之后依次介绍了基于三角形理论衍生而出的序列二次规划算法、应用较为广泛的驻波设计、体积分离分析和基于遗传算法的过程模拟、多目标优化等多种优化方法。分析结果表明,除多目标优化以外,无论是最传统的三角形理论,还是其他几种优化方法,在参数选择和实验设计等方面都存在诸多局限性,而多目标优化方法已被证明表现更为优异,可以适用于模拟移动床操作模式的各种变型,在未来将具有极大的发展潜力和应用前景。
中图分类号:
凌山, 刘聚明, 张前程, 李艳. 模拟移动床分离过程及其优化方法研究进展[J]. 化工进展, 2023, 42(5): 2233-2244.
LING Shan, LIU Juming, ZHANG Qiancheng, LI Yan. Research progress on simulated moving bed separation process and its optimization methods[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2233-2244.
1 | MARáZ A, KOVáCS Z, BENJAMINS E, et al. Recent developments in microbial production of high-purity galacto-oligosaccharides[J]. World Journal of Microbiology and Biotechnology, 2022, 38(6): 1-10. |
2 | JUZA M, MAZZOTTI M, MORBIDELLI M. Simulated moving-bed chromatography and its application to chirotechnology[J]. Trends in Biotechnology, 2000, 18(3): 108-118. |
3 | ZHANG Y, HIDAJAT K, RAY A K. Multi-objective optimization of simulated moving bed and Varicol processes for enantio-separation of racemic pindolol[J]. Separation and Purification Technology, 2009, 65(3): 311-321. |
4 | SONG Mingkai, CUI Linlin, KUANG Han, et al. Model-based design of an intermittent simulated moving bed process for recovering lactic acid from ternary mixture[J]. Journal of Chromatography A, 2018, 1562: 47-58. |
5 | YOUNGJIN K, TAEJONG K, CHANHO P, et al. Development of novel flow distribution apparatus for simulated moving bed to improve degree of mixing[J]. Computers & Chemical Engineering, 2022, 156: 107553. |
6 | BREVEGLIERI F, OTGONBAYAR T, MAZZOTTI M. Optimizing the yield of a pure enantiomer by integrating chiral SMB chromatography and racemization. part 2: Theory[J]. Industrial & Engineering Chemistry Research, 2021, 60(29): 10720-10735. |
7 | RAJENDRAN A, PAREDES G, MAZZOTTI M. Simulated moving bed chromatography for the separation of enantiomers[J]. Journal of Chromatography A, 2009, 1216(4): 709-738. |
8 | BROUGHTON D B. Production-scale adsorptive separations of liquid mixtures by simulated moving bed technology[J]. Separation Science and Technology, 1984, 19(11/12): 723-736. |
9 | MINCEVA M, RODRIGUES A E. Influence of the transfer line dead volume on the performance of an industrial scale simulated moving bed for p-xylene separation[J]. Separation Science and Technology, 2003, 38(7):1463-1497. |
10 | HONG S B, CHOI J H, PARK H, et al. Simulated moving bed purification of fucoidan hydrolysate for an efficient production of fucose with high purity and little loss[J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 99: 29-37. |
11 | LEE J W, KIENLE A, SEIDEL-MORGENSTERN A. On-line optimization of four-zone simulated moving bed chromatography using an equilibrium-dispersion model: II. Experimental validation[J]. Chemical Engineering Science, 2020, 226: 115808. |
12 | LIU Lina, HE Yingying, WANG Kai, et al. Metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity in mice fed with conjugated linoleic acid (CLA)[J]. Food & Function, 2020, 11(11): 9729-9739. |
13 | JO C Y, KANG H J, MUN S. Improving the performances of a simulated-moving-bed reactor for the synthesis of methyl acetate ester by using partial port-closing strategies[J]. Chemical Engineering Journal, 2022, 435: 134887. |
14 | 姚传义,郑震玮,涂志贤,等. 模拟移动床色谱分离吴茱萸碱和吴茱萸次碱[J]. 化工学报, 2021, 72(7): 3728-3737. |
YAO Chuanyi, ZHENG Zhenwei, TU Zhixian, et al. Separation of evodiamine and rutaecarpine with simulated moving bed chromatography[J]. CIESC Journal, 2021, 72(7): 3728-3737. | |
15 | ERDEM G, ABEL S, MORARI M, et al. Automatic control of simulated moving beds[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 405-421. |
16 | TOUMI A, ENGELL S, DIEHL M, et al. Efficient optimization of simulated moving bed processes[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11): 1067-1084. |
17 | BORGES DA SILVA E A, RODRIGUES A E. Design of chromatographic multicomponent separation by a pseudo-simulated moving bed[J]. AIChE Journal, 2006, 52(11): 3794-3812. |
18 | GONG Rujin, LIN Xiaojian, LI Ping, et al. Experiment and modeling for the separation of guaifenesin enantiomers using simulated moving bed and Varicol units[J]. Journal of Chromatography A, 2014, 1363: 242-249. |
19 | LIN Xiaojian, GONG Rujian, LI Jiaxu, et al. Enantioseparation of racemic aminoglutethimide using asynchronous simulated moving bed chromatography[J]. Journal of Chromatography A, 2016, 1467: 347-355. |
20 | YAO Chanyi, CHEN Jinliang, LU Yinghua, et al. Construction of an asynchronous three-zone simulated-moving-bed chromatography and its application for the separation of vanillin and syringaldehyde[J]. Chemical Engineering Journal, 2018, 331: 644-651. |
21 | CALDERON SUPELANO R, BARRETO JR A G, ANDRADE NETO A S, et al. One-step optimization strategy in the simulated moving bed process with asynchronous movement of ports: A varicol case study[J]. Journal of Chromatography A, 2020, 1634: 461672. |
22 | CALDERÓN SUPELANO R, BARRETO A G, SECCHI A R. Optimal performance comparison of the simulated moving bed process variants based on the modulation of the length of zones and the feed concentration[J]. Journal of Chromatography A, 2021,1651: 462280. |
23 | MATOS J, FARIA R P V, LOUREIRO J M, et al. Design and optimization for simulated moving bed: varicol approach[J]. IFAC-PapersOnLine, 2021, 54(3): 542-547. |
24 | ANICETO J P S, SILVA C M. Simulated moving bed strategies and designs: From established systems to the latest developments[J]. Separation & Purification Reviews, 2015, 44(1): 41-73. |
25 | YU Yueying, WOOD K R, LIU Y A. Simulation and comparison of operational modes in simulated moving bed chromatography[J]. Industrial & Engineering Chemistry Research, 2015, 54(46): 11576-11591. |
26 | YANG Ying, LU Kai, GONG Rujin, et al. Separation of guaifenesin enantiomers by simulated moving bed process with four operation modes[J]. Adsorption, 2019, 25(6): 1227-1240. |
27 | DENET F, HAUCK W, NICOUD R M, et al. Enantioseparation through supercritical fluid simulated moving bed (SF-SMB) chromatography[J]. Industrial & Engineering Chemistry Research, 2001, 40(21): 4603-4609. |
28 | CâMARA L D T. Modifier mass transfer kinetic effect in the performance of solvent gradient simulated moving bed (SG-SMB) process[J]. Journal of Physics: Conference Series, 2015, 633(1): 012104. |
29 | 蒋晓霄. 温度梯度模拟移动床拆分酮洛芬对映体的过程研究[D]. 温州: 温州大学, 2017. |
JIANG Xiaoxiao. The study of separation process of ketoprofen enantiomers on temperature gradient of simulated moving bed[D]. Wenzhou: Wenzhou University, 2017. | |
30 | WEI Feng, SHI Licheng, WANG Qiang, et al. Fast and accurate separation of the paclitaxel from yew extracum by a pseudo simulated moving bed with solvent gradient[J]. Journal of Chromatography A, 2018, 1564: 120-127. |
31 | JIANG Xiaoxiao, ZHU Lei, YU Bei, et al. Analyses of simulated moving bed with internal temperature gradients for binary separation of ketoprofen enantiomers using multi-objective optimization: Linear equilibria[J]. Journal of Chromatography A, 2018, 1531: 131-142. |
32 | REINALDO CALDERÓN S, AMARO GOMES B, JR, ARGIMIRO RESENDE S. Evaluation of the optimal performance of ModiCon and ModiCon+VariCol simulated moving bed variants[J]. Journal of Chromatography A, 2022, 1675: 463182. |
33 | LI Yan, YU Weifang, DING Ziyuan, et al. Equilibrium and kinetic differences of XOS2-XOS7 in xylo-oligosaccharides and their effects on the design of simulated moving bed purification process[J]. Separation and Purification Technology, 2019, 215: 360-367. |
34 | 李良玉,孙蕊,李朝阳,等. 顺序式模拟移动色谱纯化木糖醇母液[J]. 天然产物研究与开发, 2015, 27(10): 1789-1793. |
LI Liangyu, SUN Rui, LI Chaoyang, et al. Purification of xylitol mother liquid using sequential simulated moving bed chromatography[J]. Natural Product Research and Development, 2015, 27(10): 1789-1793. | |
35 | LI Yan, DING Ziyuan, WANG Jian, et al. A comparison between simulated moving bed and sequential simulated moving bed system based on multi-objective optimization[J]. Chemical Engineering Science, 2020, 219: 115562. |
36 | LI Yan, XU Jin, YU Weifang, et al. Multi-objective optimization of sequential simulated moving bed for the purification of xylo-oligosaccharides[J]. Chemical Engineering Science, 2020, 211: 115279. |
37 | SANTOS DA SILVA F V, SEIDEL-MORGENSTERN A. Evaluation of center-cut separations applying simulated moving bed chromatography with 8 zones[J]. Journal of Chromatography A, 2016, 1456: 123-136. |
38 | SREEDHAR B, KAWAJIRI Y. Multi-column chromatographic process development using simulated moving bed superstructure and simultaneous optimization—Model correction framework[J]. Chemical Engineering Science, 2014, 116: 428-441. |
39 | YU Weifang, HIDAJAT K, RAY A K. Optimal operation of reactive simulated moving bed and Varicol systems[J]. Journal of Chemical Technology & Biotechnology, 2003, 78(2/3): 287-293. |
40 | WONGSO F, HIDAJAT K, RAY A. Improved performance for continuous separation of 1,1'-bi-2-naphthol racemate based on simulated moving bed technology[J]. Separation and Purification Technology, 2005, 46(3): 168-191. |
41 | TARAFDER A, RANGAIAH G P, RAY A K. A study of finding many desirable solutions in multiobjective optimization of chemical processes[J]. Computers & Chemical Engineering, 2007, 31(10): 1257-1271. |
42 | PARK H, KIM J W, LEE K B, et al. Comparison of the process performances of a tandem 4-zone SMB and a single-cascade 5-zone SMB for separation of galactose, levulinic acid, and 5-hydroxymethylfurfural in agarose hydrolyzate[J]. Separation and Purification Technology, 2020, 237: 116357. |
43 | PEDEFERRI M, ZENONI G, MAZZOTTI M, et al. Experimental analysis of a chiral separation through simulated moving bed chromatography[J]. Chemical Engineering Science, 1999, 54(17): 3735-3748. |
44 | KASPEREIT M, SEIDEL-MORGENSTERN A, KIENLE A. Design of simulated moving bed processes under reduced purity requirements[J]. Journal of Chromatography A, 2007, 1162(1): 2-13. |
45 | KHATTABI S, CHERRAK D E, MIHLBACHLER K, et al. Enantioseparation of 1-phenyl-1-propanol by simulated moving bed under linear and nonlinear conditions[J]. Journal of Chromatography A, 2000, 893(2): 307-319. |
46 | LEE K. Effects of mass transfer on simulated moving bed process[J]. Korean Journal of Chemical Engineering, 2009, 26(2): 468-474. |
47 | LEE J W, KIENLE A, SEIDEL-MORGENSTERN A. Numerical short-cut design of simulated moving bed chromatography for multicomponent nonlinear adsorption isotherms: Nonstoichiometric Langmuir model[J]. Industrial & Engineering Chemistry Research, 2021, 60(29): 10753-10763. |
48 | SONG I H, LEE S B, RHEE H K, et al. Identification and predictive control of a simulated moving bed process: Purity control[J]. Chemical Engineering Science, 2006, 61(6): 1973-1986. |
49 | KHAN H. Simulation assessment of continuous simulating moving bed chromatography process with partial feed and new strategy with partial feed[J]. Brazilian Journal of Chemical Engineering, 2009, 26(3): 595-610. |
50 | SOEPRIATNA N, WANG N H L, WANKAT P C. Standing wave design of a four-zone thermal SMB fractionator and concentrator (4-zone TSMB-FC) for linear systems[J]. Adsorption, 2014, 20(1): 37-52. |
51 | MUN S. Effect of adsorbent particle size on the relative merits of a non-triangular and a triangular separation region in the optimal design of a three-zone simulated moving bed chromatography for binary separation with linear isotherms[J]. Journal of Chromatography A, 2016, 1452: 36-46. |
52 | YOON T H, CHUNG B H, KIM I H. A novel design of simulated moving bed(SMB) chromatography for separation of ketoprofen enantiomer[J]. Biotechnology and Bioprocess Engineering, 2004, 9(4): 285-291. |
53 | JERMANN S, MEIJSSEN M, MAZZOTTI M. Three column intermittent simulated moving bed chromatography: 3. Cascade operation for center-cut separations[J]. Journal of Chromatography A, 2015, 1378: 37-49. |
54 | ANICETO J P S, AZENHA I S, DOMINGUES F M J, et al. Design and optimization of a simulated moving bed unit for the separation of betulinic, oleanolic and ursolic acids mixtures: Experimental and modeling studies[J]. Separation and Purification Technology, 2018, 192: 401-411. |
55 | WEI Bofeng, WANG Shaoyan. Separation of eicosapentaenoic acid and docosahexaenoic acid by three-zone simulated moving bed chromatography[J]. Journal of Chromatography A, 2020, 1625: 461326. |
56 | HOUWING J, BILLIET H A H, VAN DER WIELEN L A M. Optimization of azeotropic protein separations in gradient and isocratic ion-exchange simulated moving bed chromatography[J]. Journal of Chromatography A, 2002, 944(1/2): 189-201. |
57 | PARK B J, LEE C H, KOO Y M. Development of novel protein refolding using simulated moving bed chromatography[J]. Korean Journal of Chemical Engineering, 2005, 22(3): 425-432. |
58 | MUELLER I, SEIDEL-MORGENSTERN A, HAMEL C. Simulated-moving-bed technology for purification of the prebiotics galacto-oligosaccharides[J]. Separation and Purification Technology, 2021, 271: 118829. |
59 | ANICETO J P S, CARDOSO S P, SILVA C M. General optimization strategy of simulated moving bed units through design of experiments and response surface methodologies[J]. Computers & Chemical Engineering, 2016, 90: 161-170. |
60 | HE Q, LIERES E V, SUN Z, et al. Model-based process design of a ternary protein separation using multi-step gradient ion-exchange SMB chromatography[J]. Computers & Chemical Engineering, 2020, 138: 106851. |
61 | URIBE SANTOS D L, DELGADO DOBLADEZ J A, ÁGUEDA MATé V I, et al. Recovery and purification of acetic acid from aqueous mixtures by simulated moving bed adsorption with methanol and water as desorbents[J]. Separation and Purification Technology, 2020, 237: 116368. |
62 | DELGADO J A, ÁGUEDA V I, UGUINA M Á, et al. Modeling of the separation of lactic acid from an aqueous mixture by adsorption on polyvinylpyridine resin and desorption with methanol[J]. Separation and Purification Technology, 2018, 200: 307-317. |
63 | GILL P E, ROBINSON D P. A globally convergent stabilized SQP method[J]. SIAM Journal on Optimization, 2013, 23(4): 1983-2010. |
64 | BOGGS P T, TOLLE J W. Sequential quadratic programming[J]. Acta Numerica, 1995, 4(1): 1-51. |
65 | SHEN Yuanhui, FU Qiang, ZHANG Donghui, et al. A systematic simulation and optimization of an industrial-scale p-xylene simulated moving bed process[J]. Separation and Purification Technology, 2018, 191:48-60. |
66 | SHAHMORADI A, KHOSRAVI-NIKOU M R, AGHAJANI M, et al. Mathematical modeling and optimization of industrial scale ELUXYL simulated moving bed (SMB)[J]. Separation and Purification Technology, 2020, 248: 116961. |
67 | Y-I LIM. An optimization strategy for nonlinear simulated moving bed chromatography: Multi-level optimization procedure (MLOP)[J]. Korean Journal of Chemical Engineering, 2004, 21(4): 836-852. |
68 | WU D-J, XIE Y, MA Z, et al. Design of simulated moving bed chromatography for amino acid separations[J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 4023-4035. |
69 | HRITZKO B J, XIE Y, WOOLEY R J, et al. Standing-wave design of tandem SMB for linear multicomponent systems[J]. AIChE Journal, 2002, 48(12): 2769-2787. |
70 | HARVEY D, WEEDEN G, WANG N-H L. Speedy standing wave design and simulated moving bed splitting strategies for the separation of ternary mixtures with linear isotherms[J]. Journal of Chromatography A, 2017, 1530: 152-170. |
71 | LEE C-G, JO C Y, LEE K B, et al. Optimization of a simulated-moving-bed process for continuous separation of racemic and meso-2,3-butanediol using an efficient optimization tool based on nonlinear standing-wave-design method[J]. Separation and Purification Technology, 2021, 254: 117597. |
72 | SOEPRIATNA N, WANG N H L, WANKAT P C. Standing wave design and optimization of nonlinear four-zone thermal simulated moving bed systems[J]. Industrial & Engineering Chemistry Research, 2015, 54(42): 10419-10433. |
73 | KIM Seul-Gi, Hee-Geun NAM, KIM Jin-Hyun, et al. Optimal design of a four-zone simulated moving bed process for separation of homoharringtonine and harringtonine[J]. The Canadian Journal of Chemical Engineering, 2011, 89(2): 304-313. |
74 | HARVEY D, DING Y, WANG N-H L. Standing-wave design of Three-Zone, open-loop non-isocratic SMB for purification[J]. BMC Chemical Engineering, 2019, 1(1): 1-18. |
75 | XIE Y, FARRENBURG C A, CHIN C Y, et al. Design of SMB for a nonlinear amino acid system with mass-transfer effects[J]. AIChE Journal, 2003, 49(11): 2850-2863. |
76 | XIE Y, WU D, MA Z, et al. Extended standing wave design method for simulated moving bed chromatography: Linear systems[J]. Industrial & Engineering Chemistry Research, 2000, 39(6): 1993-2005. |
77 | LEE C-G, J-H CHOI, PARK C, et al. Standing wave design and optimization of a simulated moving bed chromatography for separation of xylobiose and xylose under the constraints on product concentration and pressure drop[J]. Journal of Chromatography A, 2017, 1527: 80-90. |
78 | MUN S. Optimization of production rate, productivity, and product concentration for a simulated moving bed process aimed atfucose separation using standing-wave-design and genetic algorithm[J]. Journal of Chromatography A, 2018, 1575: 113-121. |
79 | PARK H, JO C Y, LEE K B, et al. Standing wave design and optimization of a tandem size-exclusion simulated moving bed process for high-throughput recovery of neoagarohexaose from neoagarooligosaccharides[J]. Separation and Purification Technology, 2021, 276: 119039. |
80 | LEE H-J, XIE Y, Y-M KOO, et al. Separation of lactic acid from acetic acid using a four-zone SMB[J]. Biotechnology Progress, 2004, 20(1): 179-192. |
81 | H-G NAM, S-H JO, MUN S. Comparison of Amberchrom-CG161C and Dowex99 as the adsorbent of a four-zone simulated moving bed process for removal of acetic acid from biomass hydrolyzate[J]. Process Biochemistry, 2011, 46(10): 2044-2053. |
82 | NAM H G, HAN M G, YI S C, et al. Optimization of productivity in a four-zone simulated moving bed process for separation of succinic acid and lactic acid[J]. Chemical Engineering Journal, 2011, 171(1): 92-103. |
83 | AZEVEDO D C S, RODRIGUES A E. Design of a simulated moving bed in the presence of mass-transfer resistances[J]. AIChE Journal, 1999, 45(5): 956-966. |
84 | SILVA V M T, MINCEVA M, RODRIGUES A E. Novel analytical solution for a simulated moving bed in the presence of mass-transfer resistance[J]. Industrial & Engineering Chemistry Research, 2004, 43(16): 4494-4502. |
85 | ZABKA M, MINCEVA M, Sá GOMES P, et al. Chiral separation of R,S-α-tetralol by simulated moving bed[J]. Separation Science and Technology, 2008, 43(4): 727-765. |
86 | URIBE SANTOS D L, DELGADO J A, ÁGUEDA V I, et al. Recovery of a succinic, formic, and acetic acid mixture from a model fermentation broth by simulated moving bed adsorption with methanol as a desorbent[J]. Industrial & Engineering Chemistry Research, 2022, 61(1): 672-683. |
87 | AZEVEDO D C S, RODRIGUES A E. Fructose–glucose separation in a SMB pilot unit: Modeling, simulation, design, and operation[J]. AIChE Journal, 2001, 47(9): 2042-2051. |
88 | BORGES DA SILVA E A, PEDRUZZI I, RODRIGUES A E. Simulated moving bed technology to improve the yield of the biotechnological production of lactobionic acid and sorbitol[J]. Adsorption, 2011, 17(1): 145-158. |
89 | MINCEVA M, RODRIGUES A E. Modeling and simulation of a simulated moving bed for the separation of p-xylene[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3454-3461. |
90 | MINCEVA M, RODRIGUES A E. Two-level optimization of an existing SMB for p-xylene separation[J]. Computers & Chemical Engineering, 2005, 29(10): 2215-2228. |
91 | LEHOUCQ S, VERHèVE D, VANDE WOUWER A, et al. SMB enantioseparation: Process development, modeling, and operating conditions[J]. AIChE Journal, 2000, 46(2): 247-256. |
92 | RODRIGUES A E, PAIS L S. Design of SMB chiral separations using the concept of separation volume[J]. Separation Science and Technology, 2005, 39(2): 245-270. |
93 | GOLDBERG D E. Genetic algorithm in search, optimization, and machine learning[M]. Reading, Mass: Addison-Wesley Publishing Co., 1989. |
94 | REED P, MINSKER B S, GOLDBERG D E. A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data[J]. Journal of Hydroinformatics, 2001, 3(2): 71-89. |
95 | DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. |
96 | KASAT R B, GUPTA S K. Multi-objective optimization of an industrial fluidized-bed catalytic cracking unit(FCCU) using genetic algorithm (GA) with the jumping genes operator[J]. Computers & Chemical Engineering, 2003, 27(12): 1785-1800. |
97 | 吴献东,金晓明,苏宏业.基于NSGA-Ⅱ的模拟移动床色谱分离过程多目标操作优化[J]. 化工学报, 2007, 58(8): 2038-2044. |
WU Xiandong, JIN Xiaoming, SU Hongye. Multi-objective optimization of simulated moving bed chromatography separation based on NSGA- Ⅱ algorithm[J]. Journal of Chemical Industry and Engineering(China), 2007, 58(8): 2038-2044. | |
98 | WANG J, TIAN Y M, LI Y, et al. Multi-objective optimization of non-isothermal simulated moving bed reactor: methyl acetate synthesis[J]. Chemical Engineering Journal, 2020, 395: 125041. |
99 | 朱磊,徐进,孙玉高,等.逆向法测定酮洛芬对映体在Chiralpak AD柱上的吸附等温线[J]. 化工学报, 2012, 63(8): 2469-2476. |
ZHU Lei, XU Jin, SUN Yugao, et al. Determination of adsorption isotherms of ketoprofen enantiomers on Chiralpak AD column by inverse method[J]. CIESC Journal, 2012, 63(8): 2469-2476. | |
100 | WAGNER N, HAKANSSON E, WAHLER S, et al. Multi-objective optimization for the economic production of D-psicose using simulated moving bed chromatography[J]. Journal of Chromatography A, 2015, 1398: 47-56. |
101 | KIM P H, NAM H G, PARK C, et al. Simulated moving bed separation of agarose-hydrolyzate components for biofuel production from marine biomass [J]. Journal of Chromatography A, 2015, 1406: 231-243. |
102 | ZHANG Z, LIAO C J, CHAI H, et al. Multi-objective optimization of controllable configurations for bistable laminates using NSGA-Ⅱ[J]. Composite Structures, 2021, 266: 113764. |
103 | 路艳雪,赵超凡,吴晓锋,等. 基于改进的NSGA-Ⅱ多目标优化方法研究[J]. 计算机应用研究, 2018, 35(6): 1733-1737. |
LU Yanxue, ZHAO Chaofan, WU Xiaofeng, et al. Multi-objective optimization method research based on improved NSGA-Ⅱ[J]. Application Research of Computers, 2018, 35(6): 1733-1737. |
[1] | 王俊杰, 潘艳秋, 牛亚宾, 俞路. 分子水平催化重整装置模型构建及应用[J]. 化工进展, 2023, 42(7): 3404-3412. |
[2] | 林海, 王彧斐. 考虑噪声约束的分布式风场布局优化[J]. 化工进展, 2023, 42(7): 3394-3403. |
[3] | 代敏, 杨福胜, 张早校, 刘桂莲, 冯霄. 基于多策略集成优化算法的己烷油精馏过程3E多目标优化[J]. 化工进展, 2022, 41(6): 2852-2863. |
[4] | 李丹, 杨思宇, 钱宇. 耦合溴化锂吸收式制冷与有机朗肯循环的合成气深冷分离工艺[J]. 化工进展, 2022, 41(10): 5236-5246. |
[5] | 蒋宁, 赵世超, 谢小东, 范伟, 徐新杰, 徐英杰. 利用余热回收多能互补技术的原油蒸馏装置热集成系统的优化改造[J]. 化工进展, 2021, 40(2): 652-663. |
[6] | 田昌, 苏明旭, 蒋瑜, 夏多兵. 超声法在线测量烟气脱硫浆液粒度分布、密度方法和装置[J]. 化工进展, 2021, 40(12): 6516-6522. |
[7] | 史公初, 廖亚龙, 苏博文, 张宇, 郗家俊. 响应曲面法多目标优化铜冶炼渣氧压选择性浸出工艺[J]. 化工进展, 2020, 39(S1): 270-280. |
[8] | 谢江维, 李春利, 黄国明. 响应面法耦合NSGA-Ⅱ算法的隔壁塔结构优化[J]. 化工进展, 2020, 39(8): 2962-2971. |
[9] | 张景康, 王海清, 姜巍巍, 齐心歌. 基于不可用性及表决机制的探测器优化布置[J]. 化工进展, 2020, 39(6): 2503-2509. |
[10] | 谢小东,范伟,蒋宁,郭风元,李恩腾,徐英杰. 基于NSGA-Ⅲ算法的高维能量集成网络的优化改造[J]. 化工进展, 2020, 39(3): 872-881. |
[11] | 张莘, 高伟, 齐鸣, 余文浩, 王洪海. 基于多目标优化精馏系统综述[J]. 化工进展, 2019, 38(s1): 1-9. |
[12] | 白宏山,赵东亚,田群宏,王琪,陆诗建,杨忠德,杨建平. CO2捕集、运输、驱油与封存全流程随机优化[J]. 化工进展, 2019, 38(11): 4911-4920. |
[13] | 蒋宁,谢小东,范伟,徐英杰. 数据驱动的固定拓扑结构换热网络优化改造方法[J]. 化工进展, 2019, 38(10): 4452-4460. |
[14] | 蒋宁, 郭风元, 韩文巧, 刘华菁, 林露. 基于非逆流传热的热交换网络系统的3E优化[J]. 化工进展, 2019, 38(02): 761-771. |
[15] | 蒋宁, 韩文巧, 郭风元, 徐英杰. 基于实际热负荷分布的换热网络优化改造[J]. 化工进展, 2018, 37(08): 2935-2941. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |