1 |
World Energy Transitions Outlook 2022: 1.5℃ Pathway[R]. Abu Dhabi: International Renewable Energy Agency, 2022.
|
2 |
KABIR Ehsanul, KUMAR Pawan, KUMAR Sandeep, et al. Solar energy: Potential and future prospects[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 894-900.
|
3 |
PENG Ming, ZOU Dechun. Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs[J]. Journal of Materials Chemistry A, 2015, 3(41): 20435-20458.
|
4 |
VARMA Sreekanth J, KOWSIK Sambath Kumar, SUDIPTA Seal, et al. Fiber-type solar cells, nanogenerators, batteries, and supercapacitors for wearable applications[J]. Advanced Science, 2018, 5(9): 1800340.
|
5 |
FAN X, CHU Z Z, WANG F Z, et al. Wire-shaped flexible dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(3): 592-595.
|
6 |
ZHANG Junxiang, WANG Zhuanpei, LI Xuelian, et al. Flexible platinum-free fiber-shaped dye sensitized solar cell with 10.28% efficiency[J]. ACS Applied Energy Materials, 2019, 2(4): 2870-2877.
|
7 |
SAVAGATRUP Suchol, PRINTZ Adam D, O’CONNOR Timothy F, et al. Mechanical degradation and stability of organic solar cells: Molecular and microstructural determinants[J]. Energy & Environmental Science, 2015, 8(1): 55-80.
|
8 |
LEE Michael R, ECKERT Robert D, KAREN Forberich, et al. Solar power wires based on organic photovoltaic materials[J]. Science, 2009, 324(5924): 232-235.
|
9 |
AKIHIRO Kojima, KENJIRO Teshima, YASUO Shirai, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131(17): 6050-6051.
|
10 |
Best research-cell efficiency chart [EB/OL]. NREL gov., 2022. (2022-07-12)[2022-11-09]. .
|
11 |
QIU Longbin, DENG Jue, LU Xin, et al. Integrating perovskite solar cells into a flexible fiber[J]. Angewandte Chemie International Edition, 2014, 53(39): 10425-10428.
|
12 |
LEE Minoh, Yohan KO, Yongseok JUN. Efficient fiber-shaped perovskite photovoltaics using silver nanowires as top electrode[J]. Journal of Materials Chemistry A, 2015, 3(38): 19310-19313.
|
13 |
HE Sisi, QIU Longbin, FANG Xin, et al. Radically grown obelisk-like ZnO arrays for perovskite solar cell fibers and fabrics through a mild solution process[J]. Journal of Materials Chemistry A, 2015, 3(18): 9406-9410.
|
14 |
LI Ru, XIANG Xi, TONG Xiao, et al. Wearable double-twisted fibrous perovskite solar cell[J]. Advanced Materials, 2015, 27(25): 3831-3835.
|
15 |
DENG Jue, QIU Longbin, LU Xin, et al. Elastic perovskite solar cells[J]. Journal of Materials Chemistry A, 2015, 3(42): 21070-21076.
|
16 |
HU Hsienwei, YAN Kai, PENG Ming, et al. Fiber-shaped perovskite solar cells with 5.3% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(10): 3901-3906.
|
17 |
QIU Longbin, HE Sisi, YANG Jiahua, et al. Fiber-shaped perovskite solar cells with high power conversion efficiency[J]. Small, 2016, 12(18): 2419-2424.
|
18 |
QIU Longbin, HE Sisi, YANG Jiahua, et al. An all-solid-state fiber-type solar cell achieving 9.49% efficiency[J]. Journal of Materials Chemistry A, 2016, 4(26): 10105-10109.
|
19 |
HU Hsienwei, DONG Bin, CHEN Buxin, et al. High performance fiber-shaped perovskite solar cells based on lead acetate precursor[J]. Sustainable Energy & Fuels, 2018, 2(1): 79-84.
|
20 |
DONG Bin, HU Jing, XIAO Xinyu, et al. High-efficiency fiber-shaped perovskite solar cell by vapor-assisted deposition with a record efficiency of 10.79%[J]. Advanced Materials Technologies, 2019, 4(7): 1900131.
|
21 |
LI Qian, BALILONDA Andrew, Aizaz ALI, et al. Flexible solar yarns with 15.7% power conversion efficiency, based on electrospun perovskite composite nanofibers[J]. Solar RRL, 2020, 4(9): 2000269.
|
22 |
WALI Qamar, IFTIKHAR Faiza Jan, ELUMALAI Naveen Kumar, et al. Advances in stable and flexible perovskite solar cells[J]. Current Applied Physics, 2020, 20(5): 720-737.
|
23 |
DI GIACOMO Francesco, FAKHARUDDIN Azhar, JOSE Rajan, et al. Progress, challenges and perspectives in flexible perovskite solar cells[J]. Energy & Environmental Science, 2016, 9(10): 3007-3035.
|
24 |
KANG Minji, KIM Tae-Wook. Recent advances in fiber-shaped electronic devices for wearable applications[J]. Applied Sciences, 2021, 11(13): 6131.
|
25 |
ZHOU Yang, FANG Jian, ZHAO Yan, et al. Handbook of fibrous materials[M]. Hoboken: Wiley. 2020: 557-591.
|
26 |
CHEN Buxin, CHEN Si, DONG Bin, et al. Electrical heating‐assisted multiple coating method for fabrication of high‐performance perovskite fiber solar cells by thickness control[J]. Adv. Mater. Interfaces, 2017, 4(23): 1700833.
|
27 |
LIU Dianyi, YANG Jinli, KELLY Timothy L. Compact layer free perovskite solar cells with 13.5% efficiency[J]. Journal of the American Chemical Society, 2014, 136(49): 17116-17122.
|
28 |
BALILONDA Andrew, LI Ziqi, FU Yuequn, et al. Perovskite fiber-shaped optoelectronic devices for wearable applications[J]. Journal of Materials Chemistry C, 2022, 10(18): 6957-6991.
|
29 |
WALI Qamar, IFTIKHAR Faiza Jan, KHAN Muhammad Ejaz, et al. Advances in stability of perovskite solar cells[J]. Organic Electronics, 2020, 78: 105590.
|
30 |
张智涛, 张晔, 李一明, 等. 新型纤维状能源器件的发展和思考[J]. 高分子学报, 2016(10): 1284-1299.
|
|
ZHANG Zhitao, ZHANG Ye, LI Yiming, et al. The advancement of fiber-shaped energy harvesting and storage devices[J]. Acta Polymerica Sinica, 2016(10): 1284-1299.
|
31 |
QING Jian, CHANDRAN Hrisheekesh-Thachoth, XUE Hongtao, et al. Simple fabrication of perovskite solar cells using lead acetate as lead source at low temperature[J]. Organic Electronics, 2015, 27: 12-17.
|
32 |
WANG Lie, FU Xuemei, HE Jiqing, et al. Application challenges in fiber and textile electronics[J]. Advanced Materials, 2020, 32(5): 1901971.
|
33 |
KIM Kyungkon, LIU Jiwen, NAMBOOTHIRY Manoj A G, et al. Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics[J]. Applied Physics Letters, 2007, 90(16): 163511.
|
34 |
LIU Dianyi, ZHAO Mingyan, LI Yan, et al. Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes[J]. ACS Nano, 2012, 6(12): 11027-11034.
|
35 |
CHEN Tao, QIU Longbin, LI Houpu, et al. Polymer photovoltaic wires based on aligned carbon nanotube fibers[J]. Journal of Materials Chemistry, 2012, 22(44): 23655-23658.
|
36 |
ZHANG Zhitao, YANG Zhibin, WU Zhongwei, et al. Weaving efficient polymer solar cell wires into flexible power textiles[J]. Advanced Energy Materials, 2014, 4(11): 1301750.
|
37 |
ZHANG Ye, WANG Yuhang, WANG Lie, et al. A fiber-shaped aqueous lithium ion battery with high power density[J]. Journal of Materials Chemistry A, 2016, 4(23): 9002-9008.
|
38 |
WANG Lie, WANG Liyuan, ZHANG Ye, et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring[J]. Advanced Functional Materials, 2018, 28(42): 1804456.
|
39 |
HARDY Dorothy, MONETA Andrea, SAKALYTE Viktorija, et al. Engineering a costume for performance using illuminated LED-yarns[J]. Fibers, 2018, 6(2): 35.
|
40 |
O’CONNOR B, AN K H, ZHAO Y, et al. Fiber shaped light emitting device[J]. Advanced Materials, 2007, 19(22): 3897-3900.
|
41 |
ZHANG Zhitao, GUO Kunping, LI Yiming, et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell[J]. Nature Photonics, 2015, 9(4): 233-238.
|
42 |
CHERENACK Kunigunde, ZYSSET Christoph, KINKELDEI Thomas, et al. Woven electronic fibers with sensing and display functions for smart textiles[J]. Advanced Materials, 2010, 22(45): 5178-5182.
|
43 |
LIU Peng, GAO Zhen, XU Limin, et al. Polymer solar cell textiles with interlaced cathode and anode fibers[J]. Journal of Materials Chemistry A, 2018, 6(41): 19947-19953.
|
44 |
HUANG Yan, WING Shan Ip, YUEN Ying Lau, et al. Weavable, conductive yarn-based NiCo//Zn textile battery with high energy density and rate capability[J]. ACS Nano, 2017, 11(9): 8953-8961.
|
45 |
LOCHER Ivo, TROSTER Gerhard. Fundamental building blocks for circuits on textiles[J]. IEEE Transactions on Advanced Packaging, 2007, 30(3): 541-550.
|
46 |
LI Qiao, TAO Xiaoming. A stretchable knitted interconnect for three-dimensional curvilinear surfaces[J]. Textile Research Journal, 2011, 81(11): 1171-1182.
|
47 |
Jung Sim ROH. All-fabric interconnection and one-stop production process for electronic textile sensors[J]. Textile Research Journal, 2017, 87(12): 1445-1456.
|
48 |
HANBIT Jin, NAOJI Matsuhisa, SUNGWON Lee, et al. Enhancing the performance of stretchable conductors for E-textiles by controlled ink permeation[J]. Advanced Materials, 2017, 29(21): 1605848.
|
49 |
DE MULATIER Séverine, NASRELDIN Mohamed, DELATTRE Roger, et al. Electronic circuits integration in textiles for data processing in wearable technologies[J]. Advanced Materials Technologies, 2018, 3(10): 1700320.
|
50 |
AGCAYAZI Talha, CHATTERJEE Kony, BOZKURT Alper, et al. Flexible interconnects for electronic textiles[J]. Advanced Materials Technologies, 2018, 3(10): 1700277.
|
51 |
DHAWAN Anuj, SEYAM Abdelfattah M, GHOSH Tushar K, et al. Woven fabric-based electrical circuits[J]. Textile Research Journal, 2004, 74(10): 913-919.
|
52 |
POST E R, ORTH M, RUSSO P R, et al. E-broidery: Design and fabrication of textile-based computing[J]. IBM Systems Journal, 39(3.4): 840-860.
|
53 |
LINZ T, KALLMAYER C, ASCHENBRENNER R, et al. Wearable computers[C]//Proc., Ninth IEEE Int. Symp. Osaka, Japan, 2005.
|
54 |
NECHYPORCHUK Oleksandr, YU Junchun, NIERSTRASZ Vincent A, et al. Cellulose nanofibril-based coatings of woven cotton fabrics for improved inkjet printing with a potential in E-textile manufacturing[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(6): 4793-4801.
|
55 |
MAO Yun, ZHU Meifang, WANG Wei, et al. Well-defined silver conductive pattern fabricated on polyester fabric by screen printing a dopamine surface modifier followed by electroless plating[J]. Soft Matter, 2018, 14(7): 1260-1269.
|
56 |
LI Mingzhuan, LI Zhanyu, WANG Jun, et al. Screen printed silver patterns on functionalised aramid fabric[J]. Fibers and Polymers, 2017, 18(10): 1975-1980.
|
57 |
ZYSSET C, CHERENAVK K, KINKELDEI T, et al. Wearable Computers (ISWC) 2010[C]. Int. Symp. Seoul, South Korea, 2010.
|
58 |
LOCHER I, KIRSTEIN T, TRÖSTER G. Microelectronics (IMAPS) [C]//Proc. of 37th Int. Symp. Long Beach, CA, USA, 2004.
|
59 |
Irfan MIR, KUMAR D. Recent advances in isotropic conductive adhesives for electronics packaging applications[J]. International Journal of Adhesion and Adhesives, 2008, 28(7): 362-371.
|