1 |
张欢, 钟鹭斌, 陈进生, 等. 船舶尾气脱硫脱硝技术研究进展[J]. 化工进展, 2016, 35(11): 3650-3657.
|
|
ZHANG Huan, ZHONG Lubin, CHEN Jinsheng, et al. Review on desulfurization and denitration technologies for ship exhaust gas treatment[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3650-3657.
|
2 |
王艳, 李兆强, 张丞, 等. CeO2含量对柴油机商用稀土SCR催化剂脱硝性能的影响[J]. 化工进展, 2020, 39(7): 2662-2669.
|
|
WANG Yan, LI Zhaoqiang, ZHANG Cheng, et al. Influence of CeO2 contents on the SCR performance of commercial rare earth catalysts[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2662-2669.
|
3 |
杨宁, 窦金孝, 赵永奇, 等. 负载金属催化剂的褐煤活性半焦脱除烟气中NO性能及机理[J]. 化工进展, 2018, 37(3): 1030-1036.
|
|
YANG Ning, DOU Jinxiao, ZHAO Yongqi, et al. NO removal with carbon catalyzed by activated-char-supported metals during flue gas cleaning[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1030-1036.
|
4 |
WANG Z, ZHOU S, FENG Y, et al. Research of NOxreduction on a low-speed two-stroke marine diesel engine by using EGR(exhaust gas recirculation)-CB(cylinder bypass)and EGB(exhaust gas bypass)[J]. International Journal of Hydrogen Energy, 2017, 42(30): 19337-19345.
|
5 |
AMMAR N R, SEDDIEK I S. Eco-environmental analysis of ship emission control methods: case study RO-RO cargo vessel[J]. Ocean Engineering, 2017, 137: 166-173.
|
6 |
赵珂, 宁平, 李凯, 等. Mn/Cu-BTC催化剂同时脱硫脱硝实验研究[J]. 化工进展, 2020, 39(5): 1784-1791.
|
|
ZHAO Ke, NING Ping, LI Kai, et al. Experimental study on simultaneous removal of SO2 and NO by Mn/Cu-BTC catalyst[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1784-1791.
|
7 |
CHEN J, PU G, LI J. Oxidation of NOx using hydrogen peroxide vapor over Mo/TiO2[J]. ACS Omega, 2020, 5(20): 11784-11791.
|
8 |
郭林, 任景行, 赵勇刚, 等. 燃煤烟气低温NH3-SCR脱硝工艺中试[J]. 化工进展, 2020, 39(4): 1371-1377.
|
|
GUO Lin, REN Jinghang, ZHAO Yonggang, et al. Pilot test on low temperature NH3-SCR denitration of coal-fired flue gas[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1371-1377.
|
9 |
张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623.
|
|
ZHANG Daojun, MA Ziran, SUN Qi, et al. Progress in the mechanism of selective catalytic reduction(SCR)reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623.
|
10 |
DONG X A, ZHANG W, SUN Y, et al. Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres[J]. Journal of Catalysis, 2018, 357: 41-50.
|
11 |
HUO W C, DONG X A, LI J Y, et al. Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study[J]. Chemical Engineering Journal, 2019, 361: 129-138.
|
12 |
SHIVANI V, HARISH S, ARCHANA J, et al. Highly efficient 3-D hierarchical Bi2WO6 catalyst for environmental remediation[J]. Applied Surface Science, 2019, 488: 696-706.
|
13 |
ZHANG L, MAN Y, ZHU Y. Effects of Mo replacement on the structure and visible-light-induced photocatalytic performances of Bi2WO6 photocatalyst[J]. ACS Catalysis, 2011, 1(8): 841-848.
|
14 |
DAS T, DATTA S. Thermochemical stability, and electronic and dielectric properties of Janus bismuth oxyhalide BiOX(X = Cl, Br, I)monolayers[J]. Nanoscale Advances, 2020, 2(3): 1090-1104.
|
15 |
ZHANG Q, JIANG Z W, WANG M Z, et al. Gamma ray radiation effect on Bi2WO6 photocatalyst[J]. Chinese Journal of Chemical Physics, 2018, 31(5): 701-706.
|
16 |
SHEN H, LIU G, ZHAO Y, et al. Artificial all-solid-state system by RGO bridged Cu2O and Bi2WO6 for Z-scheme H2 production and tetracycline degradation[J]. Fuel, 2020, 259: 116311.
|
17 |
ZHU S, YANG C, LI F, et al. Improved photocatalytic Bi2WO6/BiOCl heterojunctions: one-step synthesis via an ionic-liquid assisted ultrasonic method and first-principles calculations[J]. Molecular Catalysis, 2017, 435: 33-48.
|
18 |
WU X, ZHANG K, ZHANG G, et al. Facile preparation of BiOX(X=Cl, Br, I)nanoparticles and up-conversion phosphors/BiOBr composites for efficient degradation of NO gas: oxygen vacancy effect and near infrared light responsive mechanism[J]. Chemical Engineering Journal, 2017, 325: 59-70.
|
19 |
LIAO J, CHEN L, SUN M, et al. Improving visible-light-driven photocatalytic NO oxidation over BiOBr nanoplates through tunable oxygen vacancies[J]. Chinese Journal of Catalysis, 2018, 39(4): 779-789.
|
20 |
WANG L, XU K, CUI W, et al. Monolayer epitaxial heterostructures for selective visible-light-driven photocatalytic NO oxidation[J]. Advanced Functional Materials, 2019, 29(15): 1808084.
|
21 |
HUA S, QU D, AN L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2018, 240: 253-261.
|
22 |
AI Z, HO W, LEE S, et al. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light[J]. Environmental Science & Technology, 2009, 43(11): 4143-4150.
|
23 |
ZHOU Y, ZHAO Z, WANG F, et al. Facile synthesis of surface N-doped Bi2O2CO3: origin of visible light photocatalytic activity and in situ DRIFTS studies[J]. Journal of Hazardous Materials, 2016, 307: 163-172.
|
24 |
HE W, SUN Y, JIANG G, et al. Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway[J]. Applied Catalysis B: Environmental, 2018, 232: 340-347.
|
25 |
ZHANG Q, ZHOU Y, WANG F, et al. From semiconductors to semimetals: bismuth as a photocatalyst for NO oxidation in air[J]. Journal of Materials Chemistry A, 2014, 2(29): 11065-11072.
|
26 |
JIA Y, LI S, GAO J, et al. Highly efficient(BiO)2CO3-BiO2-x-graphene photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic removal of NO[J]. Applied Catalysis B: Environmental, 2019, 240: 241-252.
|
27 |
ZHU G, HOJAMBERDIEV M, ZHANG S, et al. Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene[J]. Applied Surface Science, 2019, 467: 968-978.
|
28 |
GAO Y, HUANG Y, LI Y, et al. Plasmonic Bi/ZnWO4 microspheres with improved photocatalytic activity on NO removal under visible light[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(12): 6912-6920.
|
29 |
ZHANG W, LIU X, DONG X A, et al. Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: in situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway[J]. Chinese Journal of Catalysis, 2017, 38(12): 2030-2038.
|
30 |
FENG X, ZHANG W, SUN Y, et al. Fe(ⅲ)cluster-grafted(BiO)2CO3 superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation[J]. Environmental Science: Nano, 2017, 4(3): 604-612.
|
31 |
LI X, ZHANG W, CUI W, et al. Bismuth spheres assembled on graphene oxide: directional charge transfer enhances plasmonic photocatalysis and in situ DRIFTS studies[J]. Applied Catalysis B: Environmental, 2018, 221: 482-489.
|
32 |
KLINGENBERG B, VANNICE M A. NO adsorption and decomposition on La2O3 studied by DRIFTS[J]. Applied Catalysis B: Environmental, 1999, 21(1): 19-33.
|