化工进展 ›› 2019, Vol. 38 ›› Issue (07): 3390-3401.DOI: 10.16085/j.issn.1000-6613.2018-1991
覃发梅1,2(),邱学青1,2,孙川1,2,丁子先1,2,方志强3()
收稿日期:
2018-10-18
出版日期:
2019-07-05
发布日期:
2019-07-05
通讯作者:
方志强
作者简介:
覃发梅(1995—),女,硕士研究生,研究方向为生物质纳米材料的制备及其应用。E-mail:<email>fameiqin5934@gmail.com</email>。
基金资助:
Famei QIN1,2(),Xueqing QIU1,2,Chuan SUN1,2,Zixian DING1,2,Zhiqiang FANG3()
Received:
2018-10-18
Online:
2019-07-05
Published:
2019-07-05
Contact:
Zhiqiang FANG
摘要:
水体系重金属污染治理是目前全世界所面临的一个重大挑战。传统治理方法由于成本高、效率低等问题已不符合当今社会可持续发展战略。纳米纤维素凭借其来源丰富、可再生、化学反应活性高、比表面积大、密度低等优点,在水体系重金属离子去除领域有着光明的应用前景。然而,纳米纤维素吸附材料在水体系重金属去除领域还存在吸附量较低,吸附选择性、再生性、性能稳定性较差,制备成本较高等问题,这限制了其在水体系重金属离子去除领域的工业化应用。通过改性和结构设计不断提高纳米纤维素材料的吸附效率是行之有效的途径,本文从化学改性和结构设计两方面出发,系统地综述了纳米纤维素在水体系重金属离子去除领域的研究现状,并对其中存在的科学技术问题进行总结。最后,展望了纳米纤维素在水体系重金属离子去除领域的发展趋势。
中图分类号:
覃发梅, 邱学青, 孙川, 丁子先, 方志强. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(07): 3390-3401.
Famei QIN, Xueqing QIU, Chuan SUN, Zixian DING, Zhiqiang FANG. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progress, 2019, 38(07): 3390-3401.
一次改性 | 二次改性 | 活性位点 | 吸附量/mg·g-1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | Cr3+ | Cr(VI) | Fe3+ | Co2+ | Ni2+ | Cu2+ | Zn2+ | Ag+ | Cd2+ | Pb2+ | Hg2+ | ||||
机械分解 | — | 羟基 | — | 14[ | — | — | — | 0[ | 13[ | 4[ | 15[ | — | 17[ | — | — |
丝光化[ | 酯化 | 羧基 | — | — | — | — | 5 | 4.6 | 4.7 | 5 | — | 5 | — | — | — |
氧化 | 聚合 + 硅烷化 | 羧基+氨基 | — | — | — | — | — | — | 52[ | — | — | — | — | — | — |
硅烷化 | 羧基、巯基 | — | — | 87.5[ | — | — | — | — | — | — | — | 137.7[ | — | — | |
羧基 | — | 8.9[ | — | — | — | 8.6[ | 112[ | 66[ | — | 9.7[ | 9.4[ | — | 167[ | ||
醛基 | — | — | — | — | — | — | 38 | — | — | — | 158 | — | — | ||
酯化 | 磷酸基+ 羧基[ | — | — | — | 73 | — | — | 114 | — | 120 | — | — | — | — | |
磷酸基 | 10[ | — | — | — | — | — | — | — | — | — | — | — | — | ||
磺酸基 | — | — | — | — | — | — | — | — | — | — | 249[ | — | — | ||
硅烷化 | 氧化 | 巯基 + 羧基 | — | — | — | — | — | — | — | — | — | — | — | 729.9[ | — |
氨基[ | — | — | — | — | — | 156.3 | 195.6 | — | — | 405.6 | — | — | — | ||
接枝共聚 | 氧化 | 羧基 + 氨基 | — | — | — | — | — | — | 52[ | — | — | — | — | — | — |
羧基[ | — | — | — | — | — | 117 | 57.5[ | 138 | — | 135 | 165 | — | — |
表1 CNF改性及其重金属离子的吸附性能
一次改性 | 二次改性 | 活性位点 | 吸附量/mg·g-1 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | Cr3+ | Cr(VI) | Fe3+ | Co2+ | Ni2+ | Cu2+ | Zn2+ | Ag+ | Cd2+ | Pb2+ | Hg2+ | ||||
机械分解 | — | 羟基 | — | 14[ | — | — | — | 0[ | 13[ | 4[ | 15[ | — | 17[ | — | — |
丝光化[ | 酯化 | 羧基 | — | — | — | — | 5 | 4.6 | 4.7 | 5 | — | 5 | — | — | — |
氧化 | 聚合 + 硅烷化 | 羧基+氨基 | — | — | — | — | — | — | 52[ | — | — | — | — | — | — |
硅烷化 | 羧基、巯基 | — | — | 87.5[ | — | — | — | — | — | — | — | 137.7[ | — | — | |
羧基 | — | 8.9[ | — | — | — | 8.6[ | 112[ | 66[ | — | 9.7[ | 9.4[ | — | 167[ | ||
醛基 | — | — | — | — | — | — | 38 | — | — | — | 158 | — | — | ||
酯化 | 磷酸基+ 羧基[ | — | — | — | 73 | — | — | 114 | — | 120 | — | — | — | — | |
磷酸基 | 10[ | — | — | — | — | — | — | — | — | — | — | — | — | ||
磺酸基 | — | — | — | — | — | — | — | — | — | — | 249[ | — | — | ||
硅烷化 | 氧化 | 巯基 + 羧基 | — | — | — | — | — | — | — | — | — | — | — | 729.9[ | — |
氨基[ | — | — | — | — | — | 156.3 | 195.6 | — | — | 405.6 | — | — | — | ||
接枝共聚 | 氧化 | 羧基 + 氨基 | — | — | — | — | — | — | 52[ | — | — | — | — | — | — |
羧基[ | — | — | — | — | — | 117 | 57.5[ | 138 | — | 135 | 165 | — | — |
1 | 宋珍霞, 张继梅, 巨梦蝶, 等. 抗坏血酸稳定纳米零价铁的制备及其在含Cd(Ⅱ)废水处理中的应用[J]. 化工进展, 2018, 37(8): 3231-3237. |
SONGZ X, ZHANGJ, JUM D. Preparation of L-ascorbic acid-stabilized nanoscale zerovalent iron and its application in Cd(Ⅱ)wastewater treatment[J]. Chemical Industry and Engineering Progress, 2018, 37(8): 3231-3237. | |
2 | 杨二帅, 蔡晓君, 周梅, 等. 重金属废水的处理技术研究[J]. 当代化工, 2018, 47(1): 167-170. |
YANGE S, CAIX J, ZHOUM, alet . Study on treatment technologies of heavy metal wastewater [J]. Contemporary Chemical Industry, 2018, 47(1): 167-170. | |
3 | 杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展[J].化工学报, 2017, 68(6): 2219-2232. |
YANGR S, CHENY, LIP P, alet . Research progress on co-contamination and remediation of heavy metal ions and polycyclic aromatic hydrocarbons in soil and groundwater [J].CIESC Journal, 2017, 68(6): 2219-2232. | |
4 | BAIH, ZANX, JUAYJ, et al. Hierarchical heteroarchitectures functionalized membrane for high efficient water purification [J]. Journal of Menbrane Science, 2015, 475: 245-251. |
5 | WILLNER, MARJORIER, VIKESLAND, et al. Nanomaterial enabled sensors for environmental contaminants [J]. Journal of Nanobiotechnology, 2018, 16(1): 95. |
6 | TANK W, HEO S K, FOO M L, et al. An insight into nanocellulose as soft condensed matter: challenge and future prospective toward environmental sustainability[J]. Science of the Total Environment. 2019, 650(1): 1306-1329. |
7 | MAHFOUDHIN, BOUFIS. Nanocellulose as a novel nanostructured adsorbent for environmental remediation: a review[J]. Cellulose, 2017, 24(3): 1171-1197. |
8 | KLEMMD, CRANSTONE D, FISCHERD, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state [J]. Materials Today, 2018, 21(7): 720-748. |
9 | ZHUH, LUOW, CIESIELSKIP N, et al. Wood-derived materials for green electronics, biological devices, and energy applications[J]. Chemical Reviews, 2016, 116(16): 9305-9374. |
10 | PÄÄKKÖM, ANKERFORSM, KOSONENH, et al. Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels[J]. Biomacromolecules, 2007, 8(6): 1934-1941. |
11 | HABIBIY, GOFFINA L, SCHILTZN, et al. Bionanocomposites based on poly(ε-caprolactone)-grafted cellulose nanocrystals by ring-opening polymerisation[J]. Journal of Materials Chemistry, 2008, 18(41): 5002-5010. |
12 | KLEMMD, KRAMERF, MORITZS, et al. Nanocelluloses: a new family of nature-based materials[J]. Angewandte Chemie, 2011, 50(24): 5438-5466. |
13 | KATRINAP Y S, YEANL P, SHEEK M. Nanocellulose: recent advances and its prospects in environmental remediation[J]. Beilstein Journal of Nanotechnology, 2018, 9: 2479-2498. |
14 | MARZOUGUIZ, DAMAKM, ELLEUCHB, et al. Occurrence and enhanced removal of heavy metals in industrial wastewater treatment plant using coagulation-flocculation process[C]//Euro-Mediterranean Conference for Environmental Integration, Springer, Cham, 2017: 535-538. |
15 | MALEKIH, HÜSINGN. 16-Aerogels as promising materials for environmental remediation——a broad insight into the environmental pollutants removal through adsorption and (photo) catalytic processes[J]. New Polymer Nanocomposites for Environmental Remediation, 2018: 389-436. |
16 | HOKKANENS, REPOE, SILLANPÄÄM. Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose[J]. Chemical Engineering Journal, 2013, 223(3): 40-47. |
17 | HOKKANENS, REPOE, SUOPAJÄRVIT, et al. Adsorption of Ni(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) from aqueous solutions by amino modified nanostructured microfibrillated cellulose[J]. Cellulose, 2014, 21(3): 1471-1487. |
18 | GENGB, WANGH, WUS, et al. Surface-tailored nanocellulose aerogels with thiol-functional moieties for highly efficient and selective removal of Hg(Ⅱ) ions from water[J]. ACS Sustainable Chemistry & Engineering, 2017, 5 (12): 11715-11726. |
19 | LIUP, BORRELLP F, BOŽIČM, et al. Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents[J]. Journal of Hazardous Materials, 2015, 294: 177-185. |
20 | YAOC, WANGF, CAIZ, et al. Aldehyde-functionalized porous nanocellulose for effective removal of heavy metal ions from aqueous solutions[J]. RSC Advances, 2016, 6(95): 92648-92654. |
21 | KARDAMA, RAJ K R, SRIVASTAVAS, et al. Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution[J]. Clean Technologies & Environmental Policy, 2014, 16(2): 385-393. |
22 | SINGHK, ARORAJ K, SINHAT J M, et al. Functionalization of nanocrystalline cellulose for decontamination of Cr(Ⅲ) and Cr(Ⅵ) from aqueous system: computational modeling approach [J]. Clean Technologies & Environmental Policy, 2014, 16(6): 1179-1191. |
23 | 侯淑娜, 苏巧权, 林春香. 纳米纤维素的改性及应用[J]. 中华纸业, 2017, 38(22): 11-17. |
HOUS N, SUQ Q, LINC X. Modification and application of nanocellulose[J]. China Pulp & Paper Industry, 2017, 38(22): 11-17. | |
24 | PUTROJ N, SANTOSOS P, ISMADJIS, et al. Investigation of heavy metal adsorption in binary system by nanocrystalline cellulose-bentonite nanocomposite: improvement on extended Langmuir isotherm model[J]. Microporous & Mesoporous Materials, 2017, 246: 166-177. |
25 | IM W, LEE S, ABHARIA R, et al. Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils[J]. Cellulose, 2018, 25(2): 1-11. |
26 | ZHUC, SOLDATOVA, MATHEWA P. Advanced microscopy and spectroscopy reveal the adsorption and clustering of Cu(Ⅱ) onto TEMPO-oxidized cellulose nanofibers[J]. Nanoscale, 2017, 9(22): 7419-7428. |
27 | LIUP, OKSMANK, MATHEWA P. Surface adsorption and self-assembly of Cu(Ⅱ) ions on TEMPO-oxidized cellulose nanofibers in aqueous media [J]. Journal of Colloid & Interface Science, 2016, 464: 175-182. |
28 | ANIRUDHANT S, NIMAJ, DIVVAP L. Adsorption of chromium (Ⅵ) from aqueous solutions by glycidylmethacrylate-grafted-densified cellulose with quaternary ammonium groups[J]. Applied Surface Science, 2013, 279: 441-449. |
29 | MINS H, HANJ S, SHINE W, et al. Improvement of cadmium ion removal by base treatment of juniper fiber[J]. Water Research, 2004, 38(5): 1289-1295. |
30 | HUANGC F, CHENJ K, TSAIT Y, et al. Dual-functionalized cellulose nanofibrils prepared through TEMPO-mediated oxidation and surface-initiated ATRP[J]. Polymer, 2015, 72: 395-405. |
31 | SIRVIÖJ A, HASAT, LEIVISKÄT, et al. Bisphosphonate nanocellulose in the removal of vanadium (Ⅴ) from water[J]. Cellulose, 2015, 23(1): 689-697. |
32 | EYLEYS, THIELEMANSW. Surface modification of cellulose nanocrystals[J]. Frontiers of Chemical Engineering in China, 2007, 1(3): 228-232. |
33 | DONIAA M, YOUSIFA M, ATIAA A, et al. Preparation and characterization of modified cellulose adsorbents with high surface area and high adsorption affinity for Hg(Ⅱ)[J]. Journal of Dispersion Science & Technology, 2014, 35(3): 380-389. |
34 | XUQ, WANGY, JINL, et al. Adsorption of Cu(Ⅱ), Pb(Ⅱ) and Cr(Ⅵ) from aqueous solutions using black wattle tannin-immobilized nanocellulose[J]. Journal of Hazardous Materials, 2017, 339: 91-99. |
35 | WAFAM, SAMIB. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126: 199-207. |
36 | O'CONNELLD W, BIRKINSHAWC, O'DWYERT F. Heavy metal adsorbents prepared from the modification of cellulose: a review [J]. Bioresour. Technol., 2008, 99(15): 6709-6724. |
37 | AOKIN, FUKUSHIMAK, KURAKATAH, et al. 6-Deoxy-6-mercaptocellulose and its S-substituted derivatives as sorbents for metal ions[J]. Reactive & Functional Polymers, 1999, 42(3): 223-233. |
38 | VENÄLÄINENS H, HARTIKAINENH. Resource-efficient purification of acidic multi-metal process water by means of anionic nanofibrillated cellulose[J]. Journal of Cleaner Production, 2018, 185: 516-522. |
39 | ZHANGX, ZHAOJ, CHENGL, et al. Acrylic acid grafted and acrylic acid/sodium humate grafted bamboo cellulose nanofibers for Cu2+ adsorption[J]. RSC Advances, 2014, 4(98): 55195-55201. |
40 | LIUP, SEHAQUIH, TINGAUTP, et al. Cellulose and chitin nanomaterials for capturing silver ions (Ag+) from water via surface adsorption[J]. Cellulose, 2014, 21(1): 449-461. |
41 | SUOPAJÄRVIT, LIIMATAINENH, KARJALAINENM, et al. Lead adsorption with sulfonated wheat pulp nanocelluloses[J]. Journal of Water Process Engineering, 2015, 5: 136-142. |
42 | YANGR, AUBRECHTK B, MA H, et al. Thiol-modified cellulose nanofibrous composite membranes for chromium (Ⅵ) and lead (Ⅱ) adsorption[J]. Polymer, 2014, 55(5): 1167-1176. |
43 | SRIVASTAVAS, KARDAMA, RAJ K R. Nanotech reinforcement onto cellulosic fibers: green remediation of toxic metals[J]. International Journal of Green Nanotechnology, 2012, 4(1): 46-53. |
44 | MA H, HSIAOB S, CHUB. Ultrafine cellulose nanofibers as efficient adsorbents for removal of UO22+ in water[J]. ACS Macro Letters, 2013, 1(1): 213-216. |
45 | ZHANGN, ZANGG L, SHIC, et al. A novel adsorbent TEMPO-mediated oxidized cellulose nanofibrils modified with PEI: Preparation, characterization, and application for Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2016, 316: 11-18. |
46 | MAATARW, BOUFIS. Poly(methacylic acid-co-maleic acid) grafted nanofibrillated cellulose as a reusable novel heavy metal ions adsorbent[J]. Carbohydrate Polymers, 2015, 126: 199-207. |
47 | CHITPONGN, HUSSONS M. Polyacid functionalized cellulose nanofiber membranes for removal of heavy metals from impaired waters[J]. Journal of Membrane Science, 2017, 523: 418-429. |
48 | DICKHOUTJ M, MORENOJ, BIESHEUVELP M, et al. Produced water treatment by membranes: a review from a colloidal perspective[J]. Journal of Colloid & Interface Science, 2017, 487: 523-534. |
49 | YINGY, YINGW, LIQ, et al. Recent advances of nanomaterial-based membrane for water purification[J]. Applied Materials Today, 2017, 7: 144-158. |
50 | KIM S, CHUK H, PARKC M, et al. Removal of contaminants of emerging concern by membranes in water and wastewater: a review[J]. Chemical Engineering Jornal, 2018, 335: 896-914. |
51 | KARIMZ, CLAUDPIERRES, GRAHNM, et al. Nanocellulose based functional membranes for water cleaning: Tailoring of mechanical properties, porosity and metal ion capture[J]. Journal of Membrane Science, 2016, 514: 418-428. |
52 | MOHAMMEDN, GRISHKEWICHN, TAM K C. Cellulose nanomaterials: promising sustainable nanomaterials for application in water/wastewater treatment processes[J]. Environmental Science Nano, 2018, 5: 623-658. |
53 | ABOU-ZEIDR E, KHIARIR, EL-WAKILN, et al. Current state and new trends in the use of cellulose nanomaterials for wastewater treatment[J]. Biomacromolecules, 2019, 20(2): 573-597. |
54 | MAZHARU I, ULLAHMW, KHANS, et al. Recent advancement in cellulose based nanocomposite for addressing environmental challenges [J]. Recent Patents on Nanotechnology, 2016, 10(3): 169-180. |
55 | FANGZ, ZHUH, BAOW, et al. Highly transparent paper with tunable haze for green electronics[J]. Energy & Environmental Science, 2014, 7(10): 3313-3319. |
56 | FANGZ, ZHUH, YUANY, et al. Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells[J]. Nano Letters, 2014, 14(2): 765-773. |
57 | LIM, WUZ, LUOM, et al. Highly hydrophilic and anti-fouling cellulose thin film composite membrane based on the hierarchical poly(vinyl alcohol-co-ethylene) nanofiber substrate[J]. Cellulose, 2015, 22(4): 2717-2727. |
58 | ZHUQ, WANGY, LIM, et al. Activable carboxylic acid functionalized crystalline nanocellulose/PVA-co-PE composite nanofibrous membrane with enhanced adsorption for heavy metal ions[J]. Separation & Purification Technology, 2017, 186: 70-77. |
59 | FACCHID P, CAZETTAA L, CANESINE A, et al. New magnetic chitosan/alginate/Fe3O4@SiO2 hydrogel composites applied for removal of Pb(Ⅱ) ions from aqueous systems[J]. Chemical Engineering Journal, 2017, 337: 595-608. |
60 | FRANCEK J D, HOARET, CRANSTONE D. A review of hydrogels and aerogels containing nanocellulose[J]. Chemistry of Materials, 2017, 29(11): 4609-4631. |
61 | NASCIMENTOD M, NUNESY L, FIGUEIRÊDOM C B, et al. Nanocellulose nanocomposite hydrogels: technological and environmental issues[J]. Green Chemistry, 2018, 20: 2428-2448. |
62 | LIJ, XUZ, WUW, et al. Nanocellulose/poly(2-(dimethylamino) ethyl methacrylate) interpenetrating polymer network hydrogels for removal of Pb(Ⅱ) and Cu(Ⅱ) ions[J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2018, 538: 474-480. |
63 | WANGD C, YUH Y, FANX, et al. High aspect ratio carboxylated cellulose nanofibers crosslinked to robust aerogels for superabsorption-flocculants: paving way from nanoscale to macroscale[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20755-20766. |
64 | QIANZ, WANGZ, ZHAON, et al. Aerogels derived from polymer nanofibers and their applications[J]. Macromolecular Rapid Communications, 2018, 39(14): 1700724. |
65 | LIJ, ZUOK, WUW, et al. Shape memory aerogels from nanocellulose and polyethyleneimine as a novel adsorbent for removal of Cu(Ⅱ) and Pb(Ⅱ)[J]. Carbohydrate Polymers, 2018, 196: 376-384. |
66 | ZHENGQ, CAIZ, GONGS. Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents[J]. Journal of Materials Chemistry A, 2014, 2(9): 3110-3118. |
67 | ZHAOJ, ZHANGX, HEX, et al. Super biosorbent from dendrimer poly(amidoamine)-grafted cellulose nanofibril aerogels for effective removal of Cr(Ⅵ)[J]. Journal of Materials Chemistry A, 2015, 3(28): 14703-14711. |
68 | RAM B, CHAUHANG S. New spherical nanocellulose and thiol-based adsorbent for rapid and selective removal of mercuric ions[J]. Chemical Engineering Journal, 2018, 331: 587-596. |
69 | RONGL, ZHUZ, WANGB, et al. Facile fabrication of thiol-modified cellulose sponges for adsorption of Hg2+ from aqueous solutions[J]. Cellulose, 2018, 25(5): 3025-3035. |
70 | ZHUC, LIUP, MATHEWA P. Self-assembled TEMPO cellulose nanofibers-graphene oxide based biohybrids for water purification[J]. ACS Applied Materials & Interfaces, 2017, 9 (24): 21048-21058. |
71 | BOS, RENW, LEIC, et al. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(Ⅳ) from water[J]. Journal of Solid State Chemistry, 2018, 262: 135-141. |
72 | ZHUH, YANGX, CRANSTONE D, et al. Flexible and porous nanocellulose aerogels with high loadings of metal-organic-framework particles for separations applications[J]. Advanced Materials, 2016, 28(35): 7652-7657. |
73 | HONGH J, LIM J S, HWANGJ Y, et al. Carboxymethlyated cellulose nanofibrils(CMCNFs) embedded in polyurethane foam as a modular adsorbent of heavy metal ions[J]. Carbohydrate Polymers, 2018, 195: 136-142. |
74 | HEBBARR S,ISLOORA M,ANANDAK,et al.Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal.[J].Journal of Materials Chemistry A, 2016, 4(3): 764-774. |
75 | MA J, HEY, ZENGG, et al. Bio-inspired method to fabricate poly-dopamine/reduced graphene oxide composite membranes for dyes and heavy metal ion removal[J]. Polymers for Advanced Technologies, 2018, 29(2): 941-950. |
76 |
HUL B, KONGW Q, WANGC W, et al. Muscle-inspired highly anisotropic, strong,ion-conductive hydrogels[J]. Advanced Materials, 2018, 30(39). DOI: 10.1002/adma.201801934.
DOI |
77 | BETHKEK, PALANTÖKENS, ANDREIV, et al. Functionalized cellulose for water purification, antimicrobial applications, and sensors[J]. Advanced Functional Materials, 2018, 28(23): 1800409. |
78 | 杨全岭, 杨俊伟, 石竹群, 等. 纳米纤维素基导电材料及其在电子器件领域的研究进展[J]. 林业工程学报, 2018, 3(3): 1-11. . |
YANGQ L, YANGJ W, SHIZ Q, et al. Recent progress of nanocellulose-based electroconductive materials and their applications as electronic devices[J]. Journal of Forestry Engineering, 2018, 3(3): 1-11. | |
79 | LUOW, XIAOG, TIANF, et al. Engineering robust metal-phenolic network membranes for uranium extraction from seawater[J]. Energy & Environmental Science, 2019, 12(2): 607-614. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[8] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[9] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
[10] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[11] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[12] | 王知彩, 刘伟伟, 周璁, 潘春秀, 闫洪雷, 李占库, 颜井冲, 任世彪, 雷智平, 水恒福. 基于煤基腐殖酸的高效减水剂合成与性能表征[J]. 化工进展, 2023, 42(7): 3634-3642. |
[13] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
[14] | 李艳玲, 卓振, 池亮, 陈曦, 孙堂磊, 刘鹏, 雷廷宙. 氮掺杂生物炭的制备与应用研究进展[J]. 化工进展, 2023, 42(7): 3720-3735. |
[15] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |