化工进展 ›› 2019, Vol. 38 ›› Issue (01): 217-228.DOI: 10.16085/j.issn.1000-6613.2018-0887
收稿日期:
2018-04-29
修回日期:
2018-07-10
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
冯杰
作者简介:
李文英,教授,博士生导师,研究方向为煤化学化工及煤转化系统设计与优化。E-mail:<email>ying@tyut.edu.cn</email>。|冯杰,教授,博士生导师,研究方向为煤/生物质化学及加工转化技术。E-mail:<email>fengjie@tyut.edu.cn</email>。
基金资助:
Wenying LI1(),Hai MU1,Wei WANG1,Cuiping YE1,2,Jie FENG1()
Received:
2018-04-29
Revised:
2018-07-10
Online:
2019-01-05
Published:
2019-01-05
Contact:
Jie FENG
摘要:
煤基粗油是指原煤经各种热化学反应、化工过程加工处理后得到的初级液体产物,包括煤焦油、煤直接液化油和煤间接液化油等。以生产过程全流程物料衡算为约束条件,对煤基粗油全组分组成的准确定性定量分析,不仅可以全面掌握煤基粗油的组成组分性质,而且可实现对煤基粗油的进一步精准加工、提质生产。但由于煤基粗油组分组成的复杂性,不仅难以实现进样组分及分析结果之间的物料衡算,而且也不能最大程度地实现对所有组分的组成及含量的准确分析,至今尚未见到对此内容相关文献资料报道,也没有相应分析方法的国家或行业标准。因此,以物料衡算为约束,建立全面、系统的分析方法,对煤基粗油进行精准定性定量分析是目前亟需解决的问题。本文指出利用气相色谱与红外光谱联用、液相色谱分离后与紫外光谱、同步荧光光谱联用等光谱分析法可快速获得煤基粗油族组分含量的测定,或是对煤基粗油性质做定性的描述;核磁共振波谱法可实现酚类化合物准确的定性、定量;化学分析法仅适合于煤基粗油具体成分的定性定量分析;红外光谱、核磁共振波谱、凝胶渗透色谱和元素分析结合可系统分析与表征煤基粗油及其组分,得到一些重要的物质结构参数信息;色谱分析法可通过色谱的分离功能使复杂混合物分离,并利用各种检测器工作原理的不同来实现定性和定量。其中定性主要采用质谱仪、光谱仪、核磁共振波谱仪等;定量的方法有归一化法、内标法、外标法、响应因子预测法。针对煤基粗油轻质组分(沸点<350℃)组成的定性定量,气相色谱-质谱联用(GC-MS)技术为此分析过程提供了可能,本文提出并推导了火焰离子化检测仪(FID)响应因子预测公式,将该公式与面积归一化法联用建立FID定量方法体系,加标回收实验(回收率为99.07%,质量分数)表明该方法体系准确、有效,可以被广泛应用于复杂有机混合物的定量分析中,并指出煤基粗油轻质组分定性定量分析过程中的关键在于对复杂混合物中各组分响应因子的准确获得。
中图分类号:
李文英, 慕海, 王伟, 叶翠平, 冯杰. 煤基粗油轻质组分定性定量分析现状与展望[J]. 化工进展, 2019, 38(01): 217-228.
Wenying LI, Hai MU, Wei WANG, Cuiping YE, Jie FENG. Status quo and outlook of qualitative and quantitative analysis of light weight fractions of coal-based crude oil[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 217-228.
物质峰 | 面积含量/% | 物质峰 | 面积含量/% |
---|---|---|---|
甲基环己烷 | 8.86 | 十氢萘 | 10.14 |
甲苯 | 9.12 | 十一烷 | 25.49 |
苯酚 | 10.81 | 四氢萘 | 21.05 |
间甲酚 | 14.53 | 总计 | 100 |
表1 混合物中GC-MS的TIC峰面积比[5]
物质峰 | 面积含量/% | 物质峰 | 面积含量/% |
---|---|---|---|
甲基环己烷 | 8.86 | 十氢萘 | 10.14 |
甲苯 | 9.12 | 十一烷 | 25.49 |
苯酚 | 10.81 | 四氢萘 | 21.05 |
间甲酚 | 14.53 | 总计 | 100 |
物质 | 平均值 (质量分 数)/% | 标准偏差(质量分数)/% | 物质 | 平均值(质量分数)/% | 标准偏差(质量分数)/% |
---|---|---|---|---|---|
物料衡算 | (99.07 ± 0.34)%(质量分数) | ||||
乙基环己烷 | 94.70 | 0.28 | 十四醇 | 98.02 | 0.59 |
十五烷 | 95.53 | 0.51 | 1-萘酚 | 96.32 | 0.33 |
双戊烯 | 98.81 | 0.44 | 吡咯 | 100.24 | 0.36 |
异丙苯 | 96.53 | 0.39 | 苯胺 | 101.32 | 0.39 |
菲 | 96.80 | 0.22 | 吲哚 | 97.69 | 0.50 |
1-甲基萘 | 100.09 | 0.43 | 苯甲腈 | 103.36 | 0.37 |
茚 | 99.98 | 0.49 | 二苯并噻吩 | 97.91 | 0.61 |
邻甲酚 | 100.53 | 0.39 | 邻氟苯胺 | 104.21 | 0.37 |
邻硝基甲苯 | 102.05 | 0.56 |
表2 空白加标回收实验结果[97]
物质 | 平均值 (质量分 数)/% | 标准偏差(质量分数)/% | 物质 | 平均值(质量分数)/% | 标准偏差(质量分数)/% |
---|---|---|---|---|---|
物料衡算 | (99.07 ± 0.34)%(质量分数) | ||||
乙基环己烷 | 94.70 | 0.28 | 十四醇 | 98.02 | 0.59 |
十五烷 | 95.53 | 0.51 | 1-萘酚 | 96.32 | 0.33 |
双戊烯 | 98.81 | 0.44 | 吡咯 | 100.24 | 0.36 |
异丙苯 | 96.53 | 0.39 | 苯胺 | 101.32 | 0.39 |
菲 | 96.80 | 0.22 | 吲哚 | 97.69 | 0.50 |
1-甲基萘 | 100.09 | 0.43 | 苯甲腈 | 103.36 | 0.37 |
茚 | 99.98 | 0.49 | 二苯并噻吩 | 97.91 | 0.61 |
邻甲酚 | 100.53 | 0.39 | 邻氟苯胺 | 104.21 | 0.37 |
邻硝基甲苯 | 102.05 | 0.56 |
1 | 张德祥 . 煤制油技术基础与应用研究[M]. 上海: 上海科学技术出版社, 2013. |
ZHANG Dexiang . Coal oil technology foundation and application research[M]. Shanghai: Shanghai Science and Technology Press,2013. | |
2 | 肖瑞华 .煤焦油化工学[M].北京: 冶金工业出版社,2009. |
XIAO Ruihua .Coal tar chemical engineering[M]. Beijing: Metallurgical Industry Press,2009. | |
3 | 朱继升, LAWRENCE P N , EDWIN L K ,等 . 两种烟煤的液化及液化油的组成特征研究[J]. 燃料化学学报,2001,29(3): 214-218. |
ZHU Jisheng , LAWRENCE P N , EDWIN L K ,et al . Study on liquefaction and composition of two bituminous coals[J]. Journal of Fuel Chemistry and Technology,2001, 29(3): 214-218. | |
4 | WHITEHURST D D , SIDNEY E B , FRANCIS J .D,et al. New characterization techniques for coal-derived liquids[J]. Fuel, 1982, 61(10): 994-1005. |
5 | 吴美香 . 煤液化油窄馏分族组成定量分析方法的建立[D]. 太原: 太原理工大学, 2014. |
WU Meixiang . Establishment of a quantitative analysis method for the composition of narrow-cut fractions of coal liquefaction oils[D]. Taiyuan: Taiyuan University of Technology, 2014. | |
6 | 樊文俊, 吴美香, 郝建树, 等 . 紫外光谱法分析煤直接液化油族组成[J]. 光谱学与光谱分析, 2015, 35(7): 1938-1943. |
FAN Wenjun , WU Meixiang , HAO Jianshu , et al . Ultraviolet spectroscopy analysis of direct coal liquefaction oil composition[J]. Spectroscopy and Spectral Analysis, 2015, 35(7): 1938-1943. | |
7 | KERSHAW J R , CHIRAG S , JUNICHIRO H , et al . Fluorescence spectroscopic analysis of tars from the pyrolysis of a victorian brown coal in a wire-mesh reactor[J]. Energy & Fuels, 2000, 14(2): 476-482. |
8 | 余立旺, 尤静林, 王媛媛, 等 . 煤焦油的拉曼光谱表征和组分识别[J]. 燃料化学学报, 2015, 43(5): 530-536. |
YU Liwang , YOU Jinglin , WANG Yuanyuan , et al . Coal tar raman spectroscopic characterization and component identification[J]. Journal of Fuel Chemistry and Technology, 2015, 43(5): 530-536. | |
9 | FARNUM S A , FARNUM B W . Determination of low-rank coal liquefaction light oils by chromatography and nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1982, 54(6): 979-985. |
10 | 高振楠, 刘立麟, 朱肖曼 . 核磁共振法应用于煤液化油中酚类化合物分析[J]. 洁净煤技术, 2007, 13(6): 35-39. |
GAO Zhennan , LIU Lilin , ZHU Xiaoman . NMR method applied to the analysis of phenolic compounds in coal liquefaction oils[J]. Clean Coal Technology, 2007, 13(6): 35-39. | |
11 | SCHWEIGHARDT F K , RETCOFSKY H L , FRIEDMAN S , et al . Trimethylsilyl ether formation to quantitate hydroxyls by nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1978, 50(2): 368-371. |
12 | SNAPE C E , SMITH C A , BARTLE K D , et al . Estimation of oxygen group concentrations in coal extracts by nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1982, 54(1): 20-25. |
13 | FLOYD F L . Determination of phenols by fluorine-19 nuclear magnetic resonance of hexafluoroacetone derivatives[J]. Analytical Chemistry, 1974, 46(4): 496-499. |
14 | KOLLER K L , DORN H C . Acid-catalyzed reactions of 2,2,2-trifluorodiazoethane for analysis of functional groups by fluorine-19 nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1982, 54(3): 529-533. |
15 | SLEEVI P , GLASS T E , DORN H C . Trifluoroacetyl chloride for characterization of organic functional groups by fluorine-19 nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1979, 51(12): 1931-1934. |
16 | SPRATT M P , DORN H C . p-Fluorobenzoyl chloride for characterization of active hydrogen functional groups by fluorine-19 nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1984, 56(12): 2038-2043. |
17 | ERIC J D , STANFORD L S , BURTRON H D . Determination of hydroxyl group concentration in coal liquids by phosphorus-31 NMR[J]. Energy & Fuels, 1988, 2(3): 326-332. |
18 | ERDMANN K , MOHAN T , VERKADE J G . HPLC and 31P NMR analysis of phenols in coal liquefaction oils[J]. Energy & Fuels, 1996, 10(2): 378-385. |
19 | LENSINK C , VERKADE J G . Phosphorus-31 NMR spectroscopic analysis of labile hydrogen functional groups: identification with a dithiaphospholane reagent[J]. Energy & Fuels, 1990, 42(2): 197-201. |
20 | RAFII E , FAURE R , LENA L , et al . Characterization of phenols from coal liquefaction products by tin-119 nuclear magnetic resonance spectrometry[J]. Analytical Chemistry, 1985, 57(14): 2854-2858. |
21 | 李延红 . 煤液化油中含氮化合物存在形式及分布的研究[D]. 上海: 华东理工大学, 2014. |
LI Yanhong . The existence and distribution of nitrogenous compounds in coal liquefaction oils [D]. Shanghai: East China University of Science and Technology, 2014. | |
22 | 洗油酚含量的测定方法: GB/T 24207—2009[S]. 北京: 中国标准出版社, 2009. |
Determination of phenol content of washing oil: GB/T 24207—2009[S]. Bejing: Standards Press of China, 2009. | |
23 | 苏鸿 . 气相色谱法测定洗油的酚和萘含量[J]. 燃料与化工, 2012, 43(3): 50, 52. |
SU Hong . Determination of phenol and naphthalene contents in washing oil by gas chromatography[J]. Fuel & Chemical Processes, 2012, 43(3): 50, 52. | |
24 | 张飏, 孙会青, 白效言, 等 . 低温煤焦油的基本特性及综合利用[J]. 洁净煤技术, 2009, 15(6): 57-60. |
ZHANG Yang , SUN Huiqing , BAI Xiaoyan , et al . The basic characteristics of low-temperature coal tar and comprehensive utilization[J]. Clean Coal Technology, 2009, 15(6): 57-60. | |
25 | 史军歌, 吴梅, 田松柏, 等 . 电位滴定法测定煤焦油中的有机弱酸含量[J]. 石油炼制与化工, 2015, 46(8): 96-100. |
SHI Junge , WU Mei , TIAN Songbai , et al . Potentiometric titration method for determining the content of organic weak acids in coal tar [J]. Petroleum Processing and Petrochemicals, 2015, 46(8): 96-100. | |
26 | 刘艳玲 . 热量法测定煤焦油中的混合馏分的酚含量[J]. 河北冶金, 2002(4): 62-63. |
LIU Yanling . Determination of the phenol content of mixed fractions in coal tar by thermal method [J]. Hebei Metallurgy, 2002(4): 62-63. | |
27 | 华东理工大学分析化学教研组, 四川大学工科化学基础课程教学基地 . 分析化学[M]. 6版. 北京: 高等教育出版社, 2012. |
East China University of Science and Technology Teaching and Research Group, Sichuan University Engineering Chemistry Foundation Course Teaching Base . Analytical Chemistry[M]. 6th ed. Beijing: Higher Education Press, 2012. | |
28 | PADLO D M , SUBRAMANIAN R B , KUGLER E L . Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography[J]. Fuel Processing Technology, 1996, 49(1-3): 247-258. |
29 | 李勇志, 俞惟乐 . 重质油族组成的分析方法[J]. 石油化工, 1997, 26(7): 491-497. |
LI Yongzhi , YU Weile . Heavy oil composition analysis method[J]. Petrochemical Technology, 1997, 26(7): 491-497. | |
30 | MATSUMOTO A , SATO Y , NAKAMURA T . Type analysis of a product oil from coal hydrogenation by field ionization-MS utilizing selective desorption from adsorbents[J]. Japan Analyst, 1990, 39: 527-531. |
31 | YOKOYAMA S , ITOH Y , SATOH M , et al . Identification of compounds in coal liquefaction oil as compound type homologue by HPLC/GC-MS analyses[J]. Sekitan Kagaku Kaigi Happyo Ronbunshu, 1993, 30: 256-259. |
32 | BRIKER Y , IACCHELLI A , MCLEAN N . Miniaturized method for separation and quantification of nitrogen species in petroleum distillates[J]. Fuel, 2003, 82(13): 1621-1631. |
33 | 张昌鸣, 李允梅, 令狐文生, 等 . 气-液色谱联合分析煤油共炼产物族组成[J]. 分析试验室, 2003, 22(2): 24-26. |
ZHANG Changming , LI Yunmei , LINGHU Wensheng , et al . Gas-liquid chromatography combined analysis of kerosene co-product family composition[J]. Chinese Journal of Analysis Laboratory, 2003, 22(2): 24-26. | |
34 | 万惠民, 李桂贞, 颜涌捷, 等 . 高效液相色谱法测定液化煤中的多环芳烃[J]. 华东理工大学学报, 1996(2): 211-216. |
WAN Huimin , LI Guizhen , YAN Yongjie , et al . Determination of polycyclic aromatic hydrocarbons in liquefied coal by high performance liquid chromatography[J]. Journal of East China University of Science and Technology, 1996(2): 211-216. | |
35 | MCKINNEY D E , CLIFFORD D J , LEI H , et al . High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with diode array detection[J]. Energy & Fuels, 1994, 9(1): 90-96. |
36 | 王占生, 孙玮琳, 江双清, 等 . 原油组分TLC-FID棒色谱分析及初步应用[J]. 石油与天然气地质, 1995, 16(3): 222-226. |
WANG Zhansheng , SUN Yulin , JIANG Shuangqing , et al . Crude oil component TLC-FID bar chromatographic analysis and preliminary application[J]. Oil & Gas Geology, 1995, 16(3): 222-226. | |
37 | 杨海鹰, 顾洁, 蔺玉贵 . TLC/FID法测定重油烃族组成方法研究[J]. 现代科学仪器, 2000(4): 28-30. |
YANG Haiying , GU Jie , LIN Yugui . TLC FID method for determination of hydrocarbon composition of heavy oil [J]. Modern Scientific Instruments, 2000(4): 28-30. | |
38 | 陶洁 . TLC/FID法测定重芳烃含量[J]. 今日科苑, 2007(12): 105-106. |
TAO Jie . TLC/FID determination of heavy aromatic content [J]. Modern Science, 2007(12): 105-106. | |
39 | 余卫娟, 殷月芬, 张杰, 等 . TLC-FID特征指纹鉴别不同来源原油[J]. 海洋环境科学, 2012, 31(6): 901-905. |
YU Weijuan , YIN Yuefen , ZHANG Jie , et al . TLC-FID feature fingerprint identification of different sources of crude oil[J]. Marine Environmental Science, 2012, 31(6): 901-905. | |
40 | 杨佰娟, 郑立, 张魁英, 等 . TLC/FID分析原油SARA组成方法研究[J]. 石油与天然气化工, 2011, 40(2): 201-203,222. |
YANG Baijuan , ZHENG Li , ZHANG Kuiying , et al . TLC/FID analysis of crude oil SARA composition method[J]. Chemical Engineering of Oil & Gas, 2011, 40(2): 201-203, 222. | |
41 | 汪正范 . 色谱联用技术[M]. 北京: 化学工业出版社, 2001. |
WANG Zhengfan . Chromatography coupled technology[M]. Beijing: Chemical Industry Press, 2001. | |
42 | 孙鸣, 陈静, 代晓敏, 等 . 陕北中低温煤焦油减压馏分的GC-MS分析[J]. 煤炭转化, 2015(1): 58-63. |
SUN Ming , CHEN Jing , DAI Xiaomin , et al . The GC-MS analysis of the middle-low temperature coal tar vacuum distillate in northern Shaanxi[J]. Coal Conversion, 2015(1): 58-63. | |
43 | 陈雪, 朱来福, 刘书林, 等 . 内蒙低温煤焦油组分分离及GC-MS分析[J]. 广州化工, 2014(21): 126-127. |
CHEN Xue , ZHU Laifu , LIU Shulin , et al . Inner Mongolia low temperature coal tar component separation and GC-MS analysis[J]. Guangzhou Chemical Industry, 2014(21): 126-127. | |
44 | 范国梁, 宋崇林, 张延峰, 等 . GC-MS和GC-FID在定量分析中的差异[J]. 天津大学学报, 2003, 36(5): 614-617. |
FAN Guoliang , SONG Chonglin , ZHANG Yanfeng , et al . GC-MS and GC-FID differences in quantitative analysis[J]. Journal of Tianjin University, 2003, 36(5): 614-617. | |
45 | 张铭金, 唐仁生, 沈士德, 等 . 高温煤焦油组成的毛细管气相色谱/傅立叶变换红外光谱研究——中油馏分的分析[J]. 色谱, 1995, 13(6): 418-423. |
ZHANG Mingjin , TANG Rensheng , SHEN Shide , et al . Capillary gas chromatography/fourier transform infrared spectroscopic studies of high-temperature coal tar formation—analysis of oil fractions[J]. Chinese Journal of Chromatography, 1995, 13(6): 418-423. | |
46 | 张铭金, 陈帮杰, 余仲建 . 同系物保留指数与沸点的关联式中斜率因子的重要作用[J]. 色谱, 1993(1): 1-3. |
ZHANG Mingjin , CHEN Bangjie , YU Zhongjian . Important role of the slope factor in the correlation between retention index and boiling point of homologues[J]. Chinese Journal of Chromatography, 1993(1): 1-3. | |
47 | 张铭金, 沈士德, 陈诵英, 等 . 毛细管气相色谱/傅立叶变换红外光谱分析高温煤焦油中的重油馏分[J]. 色谱, 2000, 18(3): 241-246. |
ZHANG Mingjin , SHEN Shide , CHEN Songying , et al . Capillary gas chromatography/Fourier transform infrared spectroscopy analysis of heavy oil fractions in high temperature coal tar [J]. Chinese Journal of Chromatography, 2000, 18(3): 241-246. | |
48 | CICCHETTI E , PHILIPPE M , ALAIN C . Quantitation in gas chromatography: usual practices and performances of a response factor database[J]. Flavour and Fragrance Journal, 2008, 23(6): 450–459. |
49 | 王宇成 . 最新色谱分析检测方法及应用技术实用手册[M]. 长春: 银声音像出版社, 2004. |
WANG Yucheng . The latest chromatographic analysis and detection methods and practical application manual[M]. Changchun: Yinsheng Audiovisual Press, 2004. | |
50 | BASSEREAU M , CHAINTREAU A , DUPERREX S , et al . GC-MS quantification of suspected volatile allergens in fragrances. 2. Data treatment strategies and method performances[J]. Journal of Agricultural and Food Chemistry, 2007, 55(1): 25-31. |
51 | WANG M , ZENG L , LU S , et al . Development and validation of a cryogen-free automatic gas chromatograph system (GC-MS/FID) for online measurements of volatile organic compounds[J]. Analytical Methods, 2014, 6(23): 9424-9434. |
52 | PHURPA W , DORJI S . GC-FID coupled GC-MS analysis of the essential oil and the recorded biological activities of meconopsis simplicifolia[J]. Journal of Biologically Active Products from Nature, 2015, 5(6): 365-372. |
53 | MURAT G , AYSE T O , EBRU K . Comparison of lipids, fatty acids and volatile compounds of various kumquat species using HS/GC/MS/FID techniques[J]. Journal of the Science of Food and Agriculture, 2015, 95(6): 1268. |
54 | KONRAD G , MAURUS B , ADRIAN C , et al . LC‐GC analysis of the aromatics in a mineral oil fraction: Batching oil for jute bags[J]. Journal of Separation Science, 2015, 14(1): 33-39. |
55 | MATTEO B , ALESSANDRA L , MARIA C , et al . GC-FID/MS method for the impurity profiling of synthetic D-allethrin[J]. Journal of Separation Science, 2015, 27(1‐2): 89-95. |
56 | MICHAELA N , CHRISTIAN B , DENISE R , et al . Pyrolysis behaviour study of a tar- and sulphur-rich brown coal and GC-FID/MS analysis of its tar[J]. Journal of Analytical and Applied Pyrolysis, 2015, 115: 194-202. |
57 | RODRIGUEZ G , SALGADO J , DOMINGUEZ J M , et al . Comparison of soxhlet, accelerated solvent and supercritical fluid extraction techniques for volatile (GC-MS and GC/FID) and phenolic compounds (HPLC-ESI/MS/MS) from lamiaceae species[J]. Phytochemical Analysis: PCA, 2015, 26(1): 61-71. |
58 | EBRAHIMABADI E H , GHOREISHI S M , MASOUM S , et al . Combination of GC FID Mass spectrometry fingerprints and multivariate calibration techniques for recognition of antimicrobial constituents of Myrtus communis L. essential oil[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1008: 50-57. |
59 | SCIARRONE D , COSTA R , RAGONESE C , et al . Application of a multidimensional gas chromatography system with simultaneous mass spectrometric and flame ionization detection to the analysis of sandalwood oil[J]. Journal of Chromatography A, 2011, 1218(1): 137-142. |
60 | LOUREN O , DUARTE M N , JORGE G , et al . Characterization of lignin in heartwood, sapwood and bark from tectona grandis using Py-GC-MS/FID[J]. Wood Science and Technology, 2015, 49(1): 159-175. |
61 | MARSMAN J H , WILDSCHUT J , MAHFUD F , et al . Identification of components in fast pyrolysis oil and upgraded products by comprehensive two-dimensional gas chromatography and flame ionisation detection[J]. Journal of Chromatography A, 2007, 1150(2): 21. |
62 | PETER Q T , SIMONA S , IVANA B , et al . Analysis of the unsaponifiable fraction of lipids belonging to various milk-types by using comprehensive two-dimensional gas chromatography with dual mass spectrometry/flame ionization detection and with the support of high resolution time-of-flight mass spectrometry for structural elucidation[J]. Journal of Chromatography A, 2013, 1313(19): 194-201. |
63 | DJOKIC M R , DIJKMANS T , YILDIZ G , et al . Quantitative analysis of crude and stabilized bio-oils by comprehensive two-dimensional gas-chromatography[J]. Journal of Chromatography A, 2012, 1257(18): 131-140. |
64 | GYUNG C , SEUNG O , SOON L , et al . Production of bio-based phenolic resin and activated carbon from bio-oil and biochar derived from fast pyrolysis of palm kernel shells[J]. Bioresource Technology, 2015, 178: 99. |
65 | TISSOT E , ROCHAT S , DEBONNEVILLE C , et al . Rapid GC‐FID quantification technique without authentic samples using predicted response factors[J]. Flavour and Fragrance Journal, 2012, 27(4): 290-296. |
66 | SABINE L , SANDY F , YING W , et al . Quantification of hydroperoxides by gas chromatography‐flame ionization detection and predicted response factors[J]. Flavour and Fragrance Journal, 2016, 31(4): 329-335. |
67 | HARLEY J , NEL W , PRETORIUS V . Flame ionization detector for gas chromatography[J]. Nature, 1958, 181(4603): 177-178. |
68 | TORKIL H . Aspects of the mechanism of the flame ionization detector[J]. Journal of Chromatography A, 1999, 842(1): 221-227. |
69 | 孙传经 . 气相色谱分析原理与技术[M]. 北京: 化学工业出版社, 1979. |
SUN Chuanjing . Gas chromatography analysis principle and technology[M]. Beijing: Chemical Industry Press, 1979. | |
70 | 汪正范 . 色谱定性与定量[M]. 北京: 化学工业出版社, 2000. |
WANG Zhengfan . Chromatographic qualitative and quantitative[M]. Beijing: Chemical Industry Press, 2000. | |
71 | JAMES C S , WILLIAM S G , DAVID T J . The mechanism of response of flame ionization detectors[J]. Gas Chromatography, 1962: 231-267. |
72 | JAMES T , DONALD E . Calculation of flame ionization detector relative response factors using the effective carbon number concept[J]. Journal of Chromatographic Science, 1985, 23(8): 333-340. |
73 | 刘绍仁, 叶纪明 . 有效碳数法研究及其在农药气相色谱分析中的应用[J]. 农药科学与管理, 1997(4): 5-9. |
LIU Shaoren , YE Jiming . The effective carbon number method and its application in pesticide gas chromatographic analysis[J]. Pesticide Science and Administration, 1997(4): 5-9. | |
74 | JORGENSEN A D , KURT C P , VASSILIS C S . Prediction of gas chromatography flame ionization detector response factors from molecular structures[J]. Analytical Chemistry, 1990, 62(7): 683-689. |
75 | JALALI H M , GARKANI N Z . Use of self-training artificial neural networks in modeling of gas chromatographic relative retention times of a variety of organic compounds[J]. Journal of Chromatography A, 2002, 945(1-2): 173. |
76 | JALALI H M , FATEMI M H . Prediction of flame ionization detector response factors using an artificial neural network[J]. Journal of Chromatography A, 1998, 825(2): 161-169. |
77 | ALAN R K , ELENA S L , RICHARD A B , et al . Prediction of gas chromatographic retention times and response factors using a general qualitative structure-property relationships treatment[J]. Analytical Chemistry, 1994, 66(11): 1799-1807. |
78 | BONO L , NENAD T , SULEV S , et al . A new efficient approach for variable selection based on multiregression: prediction of gas chromatographic retention times and response factors[J]. Journal of Chemical Information and Computer Sciences, 1999, 39(3): 610-621. |
79 | CAO C , HUO P . Investigation of general expression to predict the molar response factor in the gc for monosubstituted alkanes[J]. Journal of Chromatographic Science, 2007, 45(6): 360-368. |
80 | GIUSEPPE M , DANILA P , ALAN R K , et al . Prediction of gas chromatographic response factors by the PLS method[J]. Tetrahedron Computer Methodology, 1989, 2(1): 17-36. |
81 | 范国梁, 宋崇林, 周维义, 等 . 氢火焰离子化检测器校正因子的理论计算[J]. 分析化学, 2002, 30(8): 906-910. |
FAN Guoliang , SONG Chonglin , ZHOU Weiyi , et al . The theoretical calculation of the correction factor of hydrogen flame ionization detector[J]. Chinese Journal of Analytical Chemistry, 2002, 30(8): 906-910. | |
82 | LAUMER J , LEOCATA S , TISSOT E , et al . Prediction of gas chromatography with flame ionization detection response factors: algorithm improvement, extension to silylated compounds, and application to the quantification of metabolites[J]. Journal of Separation Science, 2015, 38(18): 3209-3217. |
83 | SAINT L , CICCHETTI E , MERLE P , et al . Quantification in gas chromatography: prediction of flame ionization detector response factors from combustion enthalpies and molecular structures[J]. Analytical Chemistry, 2010, 82(15): 6457-6462. |
84 | CACHET T , BREVARD H , CHAINTREAU A , et al . IOFI recommended practice for the use of predicted relative-response factors for the rapid quantification of volatile flavouring compounds by GC-FID[J]. Flavour and Fragrance Journal, 2016, 31(3): 191-194. |
85 | BEENS J , BRINKMAN U . Comprehensive two-dimensional gas chromatography[J]. Analyst, 2005, 130(2): 123-127. |
86 | JANIECE L , BRYAN J , ERIK J , et al . Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry detection[J]. Talanta, 2016, 65(2): 380-388. |
87 | KATIE D , JAMES J . Analysis of alkyl phosphates in petroleum samples by comprehensive two-dimensional gas chromatography with nitrogen phosphorus detection and post-column Deans switching[J]. Journal of Chromatography A, 2012, 1252(3): 171. |
88 | 张超群 . 煤焦油中酚类组分的提取与分离[D]. 青岛: 中国石油大学(华东), 2009. |
ZHANG Chaoqun . Extraction and separation of phenols from coal tar[D]. Qingdao: China University of Petroleum, 2009. | |
89 | WANG Y G , JIANG G C , ZHANG S J , et al . The application of a modified dissolving model to the separation of major components in low-temperature coal tar[J]. Fuel Processing Technology, 2016, 149: 313-319. |
90 | 吴婷, 凌凤香, 马波, 等 . GC-MS分析低温煤焦油酸性组分及碱性组分[J]. 石油化工高等学校学报, 2013, 26(3): 44-48, 52. |
WU Ting , LING Fengxiang , Bo MA , et al . GC-MS analysis of acidic components and basic components of low-temperature coal tar[J]. Journal of Petrochemical Universities, 2013, 26(3): 44-48, 52. | |
91 | 傅若农 . 色谱分析概论[M]. 北京: 化学工业出版社, 2000. |
FU Ruonong . Introduction to chromatography analysis[M]. Beijing: Chemical Industry Press, 2000. | |
92 | 刘虎威 . 气相色谱方法及应用[M]. 北京: 化学工业出版社, 2000. |
LIU Huwei . Gas chromatography method and application[M]. Beijing: Chemical Industry Press, 2000. | |
93 | TORKIL H , INGOLF C , HANS T , et al . Inner sphere and outer sphere electron transfer to methyl iodide. deuterium and 13C kinetic isotope effects[J]. Acta Chemica Scandinavica, 1996, 50: 90-93. |
94 | TORKIL H . Mechanism of the flame ionization detector II. Isotope effects and heteroatom effects[J]. Journal of Chromatography A, 1997, 782(1): 81-86. |
95 | TORKIL H , RGEN J M . Methane formation by flame-generated hydrogen atoms in the flame ionization detector[J]. Analytical Chemistry, 1996, 68(20): 3607-3611. |
96 | 许世海, 刘治中 . 烃火焰中的离子及其对燃烧进程的影响[J]. 燃烧科学与技术, 1995, 1(4): 347-353. |
XU Shihai , LIU Zhizhong . Ions in hydrocarbon flames and their effect on the combustion process[J]. Journal of Combustion Science and Technology, 1995, 1(4): 347-353. | |
97 | 慕海 . 以物料衡算为约束的煤基粗油定性定量研究[D]. 太原: 太原理工大学, 2018. |
MU Hai . Qualitative and quantitative study of coal based crude oil constrained by material balance[D]. Taiyuan: Taiyuan University of Technology, 2018. | |
98 | 顾蕙祥, 阎宝石 . 气相色谱实用手册[M]. 北京: 化学工业出版社, 1990. |
GU Huixiang , YAN Baoshi . Gas chromatography practical manual[M]. Beijing: Chemical Industry Press, 1990. | |
99 | HUANG Y , OU Q , YU W . Characteristics of flame ionization detection for the quantitative analysis of complex organic mixtures[J]. Analytical Chemistry, 1990, 62(18): 2063-2064. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |