阳春华1,钱晓山1,2
YANG Chunhua1,QIAN Xiaoshan1,2
摘要: 在分析混沌粒子群优化算法(CPSO)和最小二乘支持向量机(SVM)理论基础上,以某氧化铝厂蒸发过程为对象,采用带有末位淘汰机制的混沌粒子群优化算法优化支持向量机的参数,建立了基于变异CPSO算法的LS-SVM的氧化铝蒸发过程软测量模型,并与PSO-LSSVM、LSSVM模型比较,研究表明,ICPSO-LSSVM模型预测准确,泛化性能好,且该模型预测结果中相对误差小于5%的样本达到92.5%,最大相对误差仅为8.1%,均方差MSE为0.05153,模型具有较高的精度,其现场实施结果表明基本可以实现出口浓度的实时在线预估。
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |