化工进展

• 化工过程与装备 • 上一篇    下一篇

基于LTSA的ICA方法及其在化工过程监控中的应用

张少捷,王振雷,钱 锋   

  1. 华东理工大学,化工过程先进控制与优化技术教育部重点实验室,上海 200237
  • 出版日期:2010-10-05 发布日期:2010-10-05

ICA based on LTSA and its application in chemical process monitoring

ZHANG Shaojie,WANG Zhenlei,QIAN Feng   

  1. Key Laboratory of Advanced Control and Optimization for Chemical Process,Ministry of Education, East China University of Science and Technology,Shanghai 200237,China
  • Online:2010-10-05 Published:2010-10-05

摘要:

独立成分分析(ICA)方法在线性非高斯过程的监控领域得到了成功应用,当过程数据非线性较强时效果不理想。局部切空间排列(LTSA)方法能够从在高维空间中呈现高度扭曲的数据集中发现隐含在其中的非线性结构。本文结合ICALTSA二者的优点,提出LTSA-ICA过程监控方法,首先用LTSA从高维数据空间中提取出低维子流形,然后在这个低维子流形上执行线性ICA算法,在保留ICA对非高斯过程处理优势的同时,较好地解决了非线性的问题。在田纳西-伊斯曼(TE)过程上的仿真表明上述方法的有效性。

Abstract:

The independent component analysisICAhas been successfully applied in the linear non-Gaussian processes monitoring. HoweverICA can not deal with the process when the data are strongly nonlinear. On the other handthe local tangent space alignmentLTSAis able to extract the nonlinear structure of the process dataset. Hencea LTSA-ICA monitoring method is proposed in combining the advantages of ICA and LTSA. LTSA is applied to extract the underlying manifold structureand ICA is applied in the sub-manifold space. The proposed method showed a satisfactory performance when used to monitor the Tennessee Eastman process.

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn