化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1666-1682.DOI: 10.16085/j.issn.1000-6613.2024-0425
朱世钰1(
), 何勇锦1,2(
), 王明兹1,2, 陈必链1,2(
)
收稿日期:2024-03-14
修回日期:2024-05-17
出版日期:2025-03-25
发布日期:2025-04-15
通讯作者:
何勇锦,陈必链
作者简介:朱世钰(1999—),男,硕士研究生,研究方向为微藻固碳。E-mail:206581124@qq.com。
基金资助:
ZHU Shiyu1(
), HE Yongjin1,2(
), WANG Mingzi1,2, CHEN Bilian1,2(
)
Received:2024-03-14
Revised:2024-05-17
Online:2025-03-25
Published:2025-04-15
Contact:
HE Yongjin, CHEN Bilian
摘要:
在“双碳”目标背景下,碳捕捉、利用及封存(carbon capture, utilization and storage, CCUS)是燃煤电厂实现烟气脱碳的最理想策略。在CCUS技术中,微藻固碳是极具潜力的CO2利用方式。微藻不仅生长速率快而且可以将CO2转化为高附加值的微藻产/制品。然而,由于光能和CO2利用率低,微藻固碳目前的经济可行性还达不到商业化要求,仍需进一步研究。基于国内外的相关研究,本文首先剖析了微藻悬浮液中烟气溶解、转化、被利用的过程以及光衰减现象;讨论了CO2、光质及其强度等因素对微藻生长和固碳性能的影响。其次,从选育高固碳能力藻种、增强CO2传质和优化光供给策略三方面综述了提高微藻CO2固定效率和光合效率的方法;扼要地阐明了其中原理,以期为后续研究提供思路。最后,展望了微藻生物质的利用方向,为微藻固碳在实现我国“双碳”目标过程中的应用提供了参考。
中图分类号:
朱世钰, 何勇锦, 王明兹, 陈必链. 微藻固定燃煤电厂烟气CO2的研究进展[J]. 化工进展, 2025, 44(3): 1666-1682.
ZHU Shiyu, HE Yongjin, WANG Mingzi, CHEN Bilian. Research progress on microalgae to fix CO2 in flue gas from coal-fired power plants[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1666-1682.
| 烟气种类 | CO2体积分数/% | CO体积分数/% | O2体积分数/% | NO x/μg·g-1 | SO x/μg·g-1 | 灰分/μg·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 未预处理的燃煤电厂烟气 | 10~12 | — | — | 680 | 1700 | 265 | [ |
| 预处理后的燃煤电厂烟气 | 10~14 | — | — | 120 | 50 | — | [ |
| 预处理后的燃煤电厂烟气 | 10 | 0.544 | 8.33 | 61 | 30 | — | [ |
| 预处理后的燃煤电厂烟气 | 13 | — | — | 20 | 32 | — | [ |
| 水泥厂烟气 | 8~11 | 0.0886 | 18~20 | 22~184 | 9~20.5 | — | [ |
| 钢铁公司烟气 | 22~26 | <0.1 | 3.0~6.0 | 25~30 | 15~20 | 1.0~10.0 | [ |
| 供暖公司烟气 | 3~6 | 1.36 | 10~12 | 21.72 | — | — | [ |
| 便携式发电机烟气 | 4~5 | 0.9~1.23 | — | 12~50 | 12~60 | — | [ |
表1 不同烟气的组分差异
| 烟气种类 | CO2体积分数/% | CO体积分数/% | O2体积分数/% | NO x/μg·g-1 | SO x/μg·g-1 | 灰分/μg·g-1 | 参考文献 |
|---|---|---|---|---|---|---|---|
| 未预处理的燃煤电厂烟气 | 10~12 | — | — | 680 | 1700 | 265 | [ |
| 预处理后的燃煤电厂烟气 | 10~14 | — | — | 120 | 50 | — | [ |
| 预处理后的燃煤电厂烟气 | 10 | 0.544 | 8.33 | 61 | 30 | — | [ |
| 预处理后的燃煤电厂烟气 | 13 | — | — | 20 | 32 | — | [ |
| 水泥厂烟气 | 8~11 | 0.0886 | 18~20 | 22~184 | 9~20.5 | — | [ |
| 钢铁公司烟气 | 22~26 | <0.1 | 3.0~6.0 | 25~30 | 15~20 | 1.0~10.0 | [ |
| 供暖公司烟气 | 3~6 | 1.36 | 10~12 | 21.72 | — | — | [ |
| 便携式发电机烟气 | 4~5 | 0.9~1.23 | — | 12~50 | 12~60 | — | [ |
| 藻种 | PBRs 工作容积/L | 曝气速率 /m3·(m3·min)-1 | 最适CO2 质量分数/% | 温度/℃ | 光照强度 /µmol·m-2·s-1 | 光周期 | 生物量生产力 /g·L-1·d-1 | CO2固定率 /g·L-1·d-1 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| Spirulina sp. LAMB220 | 0.65 | 0.154 | 10 | 28 | 56~63 | 12∶12 | 0.261 | 0.461 | [ |
| Spirulina platensis LAMB172 | 0.65 | 0.154 | 10 | 28 | 56~63 | 12∶12 | 0.265 | 0.458 | |
| Chlorella sp. | 0.5 | 0.006 | 25 | 27 | 200 | 0.221 | 0.280 | [ | |
| Scenedesmus sp. | 0.5 | 0.006 | 25 | 27 | 200 | 0.281 | 0.390 | ||
| Chlorella sorokiniana GS03 | 2.5 | 0.13 | 10 | 28 | 120 | 12∶12 | 0.220 | [ | |
| Chlorella sp. NM01 | 2.5 | 0.13 | 15 | 28 | 120 | 12∶12 | 0.110 | ||
| Heynigia riparia SX01 | 2.5 | 0.13 | 15 | 28 | 120 | 12∶12 | 0.270 | ||
| Desmodesmus communis GS05 | 2.5 | 0.13 | 10 | 28 | 120 | 12∶12 | 0.160 | ||
| Nannochloropsis oculata NCTU-3 | 0.8 | 0.25 | 2 | 26 | 300 | 0.160 | [ | ||
| Scenedesmus obliquus CNW-N | 1 | 10 | 28 | 60 | 24∶0 | 0.293 | 0.550 | [ | |
| Scenedesmus obliquus SA1 | 0.25 | 13.8 | 25 | 70 | 14∶10 | 0.131 | [ | ||
| Anabaena sp. CH1 | 5 | 0.04 | 10 | 32~36 | 250 | 24∶0 | 0.418 | 1.01 | [ |
| Acutodesmus obliquus | 0.8 | 0.5 | 20 | 26 | 70 | 24∶0 | 0.111 | [ |
表2 不同微藻耐受CO2能力的比较
| 藻种 | PBRs 工作容积/L | 曝气速率 /m3·(m3·min)-1 | 最适CO2 质量分数/% | 温度/℃ | 光照强度 /µmol·m-2·s-1 | 光周期 | 生物量生产力 /g·L-1·d-1 | CO2固定率 /g·L-1·d-1 | 参考文献 |
|---|---|---|---|---|---|---|---|---|---|
| Spirulina sp. LAMB220 | 0.65 | 0.154 | 10 | 28 | 56~63 | 12∶12 | 0.261 | 0.461 | [ |
| Spirulina platensis LAMB172 | 0.65 | 0.154 | 10 | 28 | 56~63 | 12∶12 | 0.265 | 0.458 | |
| Chlorella sp. | 0.5 | 0.006 | 25 | 27 | 200 | 0.221 | 0.280 | [ | |
| Scenedesmus sp. | 0.5 | 0.006 | 25 | 27 | 200 | 0.281 | 0.390 | ||
| Chlorella sorokiniana GS03 | 2.5 | 0.13 | 10 | 28 | 120 | 12∶12 | 0.220 | [ | |
| Chlorella sp. NM01 | 2.5 | 0.13 | 15 | 28 | 120 | 12∶12 | 0.110 | ||
| Heynigia riparia SX01 | 2.5 | 0.13 | 15 | 28 | 120 | 12∶12 | 0.270 | ||
| Desmodesmus communis GS05 | 2.5 | 0.13 | 10 | 28 | 120 | 12∶12 | 0.160 | ||
| Nannochloropsis oculata NCTU-3 | 0.8 | 0.25 | 2 | 26 | 300 | 0.160 | [ | ||
| Scenedesmus obliquus CNW-N | 1 | 10 | 28 | 60 | 24∶0 | 0.293 | 0.550 | [ | |
| Scenedesmus obliquus SA1 | 0.25 | 13.8 | 25 | 70 | 14∶10 | 0.131 | [ | ||
| Anabaena sp. CH1 | 5 | 0.04 | 10 | 32~36 | 250 | 24∶0 | 0.418 | 1.01 | [ |
| Acutodesmus obliquus | 0.8 | 0.5 | 20 | 26 | 70 | 24∶0 | 0.111 | [ |
| 1 | SHI Yihan, NI Ruiyan, ZHAO Yi. Review on multidimensional adsorbents for CO2 capture from ambient air: Recent advances and future perspectives[J]. Energy & Fuels, 2023, 37(9): 6365-6381. |
| 2 | IEA. CO2 Emissions in 2022[EB/OL]. Paris: IEA, 2023. (2023-03) [2024-03-11]. . |
| 3 | YU Haijing, ZHU Qin. Impact and mechanism of digital economy on China’s carbon emissions: From the perspective of spatial heterogeneity[J]. Environmental Science and Pollution Research International, 2023, 30(4): 9642-9657. |
| 4 | 杨友麒. “双碳”形势下能源化工企业绿色低碳转型进展[J]. 现代化工, 2023, 43(1): 1-12. |
| YANG Youqi. Progress of energy and chemical companies in transition towards green low carbon under peak carbon dioxide emission and carbon neutrality[J]. Modern Chemical Industry, 2023,43(1): 1-12. | |
| 5 | MARCHETTI Cesare. On geoengineering and the CO2 problem[J]. Climatic Change, 1977, 1(1): 59-68. |
| 6 | Global CCS Institute. Global status of CCS report 2023[EB/OL]. Melbourne: Global CCS Institute, 2023. [2024-3-11]. . |
| 7 | DANESHVAR Ehsan, WICKER Rebecca J, SHOW Pau-Loke, et al. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization—A review[J]. Chemical Engineering Journal, 2022, 427: 130884. |
| 8 | BHOLA V, SWALAHA F, RANJITH KUMAR R, et al. Overview of the potential of microalgae for CO2 sequestration[J]. International Journal of Environmental Science and Technology, 2014, 11(7): 2103-2118. |
| 9 | CHOI Hong Il, SUNG Young Joon, HONG Min Eui, et al. Reconsidering the potential of direct microalgal biomass utilization as end-products: A review[J]. Renewable and Sustainable Energy Reviews, 2022, 155: 111930. |
| 10 | 张一昕, 赵兵涛, 熊锴彬, 等. 微藻固定燃烧烟气中CO2的研究进展[J]. 生物工程学报, 2011, 27(2): 164-171. |
| ZHANG Yixin, ZHAO Bingtao, XIONG Kaibin, et al. Progress in biofixation of CO2 from combustion flue gas by microalgae[J]. Chinese Journal of Biotechnology, 2011, 27(2): 164-171. | |
| 11 | ZHENG Mingmin, DAI Jingxuan, JI Xiaowei, et al. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor[J]. Bioresource Technology, 2021, 340: 125703. |
| 12 | ZHENG Mingmin, JI Xiaowei, HE Yongjin, et al. Simultaneous fixation of carbon dioxide and purification of undiluted swine slurry by culturing Chlorella vulgaris MBFJNU-1[J]. Algal Research, 2020, 47: 101866. |
| 13 | XIE Dian, JI Xiaowei, ZHOU Youcai, et al. Chlorella vulgaris cultivation in pilot-scale to treat real swine wastewater and mitigate carbon dioxide for sustainable biodiesel production by direct enzymatic transesterification[J]. Bioresource Technology, 2022, 349: 126886. |
| 14 | REN Hongyan, ZHOU Duan, LU Jiawen, et al. Mapping the field of microalgae CO2 sequestration: A bibliometric analysis[J]. Environmental Science and Pollution Research International, 2023, 30(32): 78030-78040. |
| 15 | VAN DEN HENDE Sofie, VERVAEREN Han, BOON Nico. Flue gas compounds and microalgae: (Bio-)chemical interactions leading to biotechnological opportunities[J]. Biotechnology Advances, 2012, 30(6): 1405-1424. |
| 16 | DUARTE Jessica Hartwig, FANKA Letícia Schneider, COSTA Jorge Alberto Vieira. Utilization of simulated flue gas containing CO2, SO2, NO and ash for Chlorella fusca cultivation[J]. Bioresource Technology, 2016, 214: 159-165. |
| 17 | CHENG Jun, YANG Zongbo, ZHOU Junhu, et al. Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 498-502. |
| 18 | YADAV Geetanjali, DASH Sukanta K, Ramkrishna SEN. A biorefinery for valorization of industrial waste-water and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production[J]. Science of the Total Environment, 2019, 688: 129-135. |
| 19 | CHOI Hong Il, HWANG Sung-Won, KIM Jongrae, et al. Augmented CO2 tolerance by expressing a single H+-pump enables microalgal valorization of industrial flue gas[J]. Nature Communications, 2021, 12(1): 6049. |
| 20 | DICKINSON Kathryn E, STEMMLER Kevin, BERMARIJA Tessa, et al. Photosynthetic conversion of carbon dioxide from cement production to microalgae biomass[J]. Applied Microbiology and Biotechnology, 2023, 107(23): 7375-7390. |
| 21 | Chien-Ya KAO, CHEN Tsai-Yu, CHANG Yubin, et al. Utilization of carbon dioxide in industrial flue gases for the cultivation of microalga Chlorella sp.[J]. Bioresource Technology, 2014, 166: 485-493. |
| 22 | LEE So Young, LEE Jeong Seop, Sang Jun SIM. Enhancement of microalgal biomass productivity through mixotrophic culture process utilizing waste soy sauce and industrial flue gas[J]. Bioresource Technology, 2023, 373: 128719. |
| 23 | Adrián ESTRADA-GRAF, Sergio HERNÁNDEZ, MORALES Marcia. Biomitigation of CO2 from flue gas by Scenedesmus obtusiusculus AT-UAM using a hybrid photobioreactor coupled to a biomass recovery stage by electro-coagulation-flotation[J]. Environmental Science and Pollution Research, 2020, 27(23): 28561-28574. |
| 24 | 徐俊宸. 管式反应器强化CO2微气泡生成转化及管池结合促进微藻细胞闪光效应减排燃煤烟气CO2研究[D]. 杭州: 浙江大学, 2021. |
| XU Junchen. Strengthening generation and conversion of CO2 microbubbles in tubular photobioreactors and improving flashing-light effect in tubular-pond photobioreactors for microalgal CO2 fixation from coal-fired flue gas[D]. Hangzhou: Zhejiang University, 2021. | |
| 25 | MUKHTAR Ahmad, SAQIB Sidra, MELLON Nurhayati Binti, et al. CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review[J]. Journal of Natural Gas Science and Engineering, 2020, 77: 103203. |
| 26 | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. |
| 27 | ASGARI Mehrdad, STREB Anne, VAN DER SPEK Mijndert, et al. Synergistic material and process development: Application of a metal-organic framework, Cu-TDPAT, in single-cycle hydrogen purification and CO2 capture from synthesis gas[J]. Chemical Engineering Journal, 2021, 414: 128778. |
| 28 | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
| QIN Zhenfang, LIAO Rihong, MA Weifang. Research progress on absorption-microalgae fixation of low concentration CO2 and synchronous oil production in gas power plant[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 94-106. | |
| 29 | SONG Chunfeng, LIU Qingling, DENG Shuai, et al. Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 101: 265-278. |
| 30 | KIM Jinsoo, LEE Joo-Youp, LU Ting. Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris [J]. Biochemical Engineering Journal, 2014, 82: 34-40. |
| 31 | SONG Chunfeng, LIU Jie, XIE Meilian, et al. Intensification of a novel absorption-microalgae hybrid CO2 utilization process via fed-batch mode optimization[J]. International Journal of Greenhouse Gas Control, 2019, 82: 1-7. |
| 32 | SUN Zhongliang, ZHANG Dongmei, YAN Chenghu, et al. Promotion of microalgal biomass production and efficient use of CO2 from flue gas by monoethanolamine[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(4): 730-738. |
| 33 | SEYED HOSSEINI Nekoo, SHANG Helen, SCOTT John Ashley. Biosequestration of industrial off-gas CO2 for enhanced lipid productivity in open microalgae cultivation systems[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 458-469. |
| 34 | MIKHODYUK O S, ZAVARZIN G A, IVANOVSKY R N. Transport systems for carbonate in the extremely natronophilic cyanobacterium Euhalothece sp.[J]. Microbiology, 2008, 77(4): 412-418. |
| 35 | MACKINDER Luke C M, CHEN Chris, LEIB Ryan D, et al. A spatial interactome reveals the protein organization of the algal CO2-concentrating mechanism[J]. Cell, 2017, 171(1): 133-147. |
| 36 | 朱颜霞. 节旋藻固定烟气CO2的细胞控碳传输和应激抗逆机制研究[D]. 杭州: 浙江大学, 2021. |
| ZHU Yanxia. Controlled carbon transport and stress resistance mechanisms of Arthrospira platensis in CO2 fixation from flue gas[D]. Hangzhou: Zhejiang University, 2021. | |
| 37 | HUANG Guanhua, CHEN Feng, KUANG Yali, et al. Current techniques of growing algae using flue gas from exhaust gas industry: A review[J]. Applied Biochemistry and Biotechnology, 2016, 178(6): 1220-1238. |
| 38 | KANG Nam Kyu, KIM Minsik, BAEK Kwangryul, et al. Photoautotrophic organic acid production: Glycolic acid production by microalgal cultivation[J]. Chemical Engineering Journal, 2022, 433: 133636. |
| 39 | 夏奡, 叶文帆, 富经纬, 等. 燃煤烟气微藻固碳减排技术现状与展望[J]. 煤炭科学技术, 2020, 48(1): 108-119. |
| XIA Ao, YE Wenfan, FU Jingwei, et al. Current status and prospect of carbon fixation and emission reduction technology for coal-fired flue gas by microalgae[J]. Coal Science and Technology, 2020, 48(1): 108-119. | |
| 40 | WU Wenbo, TAN Ling, CHANG Haixing, et al. Advancements on process regulation for microalgae-based carbon neutrality and biodiesel production[J]. Renewable and Sustainable Energy Reviews, 2023,171: 112969. |
| 41 | RAVEN John A, BEARDALL John, Patricia SÁNCHEZ-BARACALDO. The possible evolution and future of CO2-concentrating mechanisms[J]. Journal of Experimental Botany, 2017, 68(14): 3701-3716. |
| 42 | SUN Nan, HAN Xunling, XU Min, et al. A thylakoid-located carbonic anhydrase regulates CO2 uptake in the cyanobacterium Synechocystis sp.PCC 6803[J]. New Phytologist, 2019, 222(1): 206-217. |
| 43 | FAN Jianhua, XU Hui, LI Yuanguang. Transcriptome-based global analysis of gene expression in response to carbon dioxide deprivation in the green algae Chlorella pyrenoidosa [J]. Algal Research, 2016, 16: 12-19. |
| 44 | ZHU Baohua, XIAO Tengfei, SHEN Han, et al. Effects of CO2 concentration on carbon fixation capability and production of valuable substances by Spirulina in a columnar photobioreactor[J]. Algal Research, 2021, 56: 102310. |
| 45 | FAN Jianhua, XU Hui, LUO Yuanchan, et al. Impacts of CO2 concentration on growth, lipid accumulation, and carbon-concentrating-mechanism-related gene expression in oleaginous Chlorella [J]. Applied Microbiology and Biotechnology, 2015, 99(5): 2451-2462. |
| 46 | RAMOS-IBARRA José Roberto, Raúl SNELL-CASTRO, NERIA-CASILLAS Jorge Alejandro, et al. Biotechnological potential of Chlorella sp.and Scenedesmus sp. microalgae to endure high CO2 and methane concentrations from biogas[J]. Bioprocess and Biosystems Engineering, 2019, 42(10): 1603-1610. |
| 47 | JIN Xuejie, GONG Sanqiang, CHEN Zishuo, et al. Potential microalgal strains for converting flue gas CO2 into biomass[J]. Journal of Applied Phycology, 2021, 33(1): 47-55. |
| 48 | CHIU Sheng-Yi, Chien-Ya KAO, TSAI Ming-Ta, et al. Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration[J]. Bioresource Technology, 2009, 100(2): 833-838. |
| 49 | Shih-Hsin HO, CHEN Wenming, CHANG Jo-Shu. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production[J]. Bioresource Technology, 2010, 101(22): 8725-8730. |
| 50 | BASU Samarpita, ROY Abhijit Sarma, MOHANTY Kaustubha, et al. Enhanced CO2 sequestration by a novel microalga: Scenedesmus obliquus SA1 isolated from bio-diversity hotspot region of Assam, India[J]. Bioresource Technology, 2013, 143: 369-377. |
| 51 | CHIANG Changling, LEE Chimei, CHEN Pei-Chung. Utilization of the cyanobacteria Anabaena sp.CH1 in biological carbon dioxide mitigation processes[J]. Bioresource Technology, 2011, 102(9): 5400-5405. |
| 52 | CHEN Lin, LI Xiaomei, WANG Mingzi, et al. Utilization of gaseous emissions from a methanol plant for cultivation of Acutodesmus obliquus [J]. Journal of Applied Phycology, 2016, 28(5): 2661-2669. |
| 53 | LIU Wen, WANG Junfeng, LIU Tianzhong. Low pH rather than high CO2 concentration itself inhibits growth of Arthrospira [J]. Science of the Total Environment, 2019, 666: 572-580. |
| 54 | WEI Li, SHEN Chen, HAJJAMI Mohamed EL, et al. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level[J]. Metabolic Engineering, 2019, 54: 96-108. |
| 55 | WANG Zhenyi, CHENG Jun, SUN Yixuan, et al. Comprehensive understanding of regulatory mechanisms, physiological models and key enzymes in microalgal cells based on various concentrations of CO2 [J]. Chemical Engineering Journal, 2023, 454: 140233. |
| 56 | LI Cong, ZHU Liang, MA Zhongqing, et al. Optimization of the nitrogen and oxygen element distribution in microalgae by ammonia torrefaction pretreatment and subsequent fast pyrolysis process for the production of N-containing chemicals[J]. Bioresource Technology, 2021, 321: 124461. |
| 57 | SALBITANI Giovanna, CARFAGNA Simona. Ammonium utilization in microalgae: A sustainable method for wastewater treatment[J]. Sustainability, 2021, 13(2): 956. |
| 58 | VEGA José M. Nitrogen and sulfur metabolism in microalgae and plants: 50 years of research[M]//Progress in Botany. Cham: Springer International Publishing, 2018: 1-40. |
| 59 | WANG Zhenyi, CHENG Jun, ZHANG Xiangdong, et al. Metabolic pathways of Chlorella sp. cells induced by exogenous spermidine against nitric oxide damage from coal-fired flue gas[J]. Bioresource Technology, 2021, 328: 124827. |
| 60 | COOPER Chris E, BROWN Guy C. The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: Chemical mechanism and physiological significance[J]. Journal of Bioenergetics and Biomembranes, 2008, 40(5): 533-539. |
| 61 | CHENG Dujia, LI Xuyang, YUAN Yizhong, et al. Adaptive evolution and carbon dioxide fixation of Chlorella sp. in simulated flue gas[J]. Science of the Total Environment, 2019, 650: 2931-2938. |
| 62 | CHEAH Wai Yan, SHOW Pau Loke, CHANG Jo-Shu, et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae[J]. Bioresource Technology, 2015, 184: 190-201. |
| 63 | FU Jingwei, HUANG Yun, XIA Ao, et al. How the sulfur dioxide in the flue gas influence microalgal carbon dioxide fixation: From gas dissolution to cells growth[J]. Renewable Energy, 2022, 198: 114-122. |
| 64 | SUN Yahui, HUANG Yun, LIAO Qiang, et al. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor[J]. Bioresource Technology, 2016, 207: 31-38. |
| 65 | ZHAO Bingtao, SU Yaxin. Process effect of microalgal-carbon dioxide fixation and biomass production: A review[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 121-132. |
| 66 | MALTSEV Yevhen, MALTSEVA Kateryna, KULIKOVSKIY Maxim, et al. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition[J]. Biology, 2021, 10(10): 1060. |
| 67 | SINGH S P, SINGH Priyanka. Effect of temperature and light on the growth of algae species: A review[J]. Renewable and Sustainable Energy Reviews, 2015, 50: 431-444. |
| 68 | TIKHONOV Alexander N. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways[J]. Plant Physiology and Biochemistry, 2014, 81: 163-183. |
| 69 | MIYAKE Chikahiro. Molecular mechanism of oxidation of P700 and suppression of ROS production in photosystem Ⅰ in response to electron-sink limitations in C3 plants[J]. Antioxidants, 2020, 9(3): 230. |
| 70 | ALBORESI Alessandro, Luca DALL’OSTO, APRILE Alessio, et al. Reactive oxygen species and transcript analysis upon excess light treatment in wild-type Arabidopsis thaliana vs a photosensitive mutant lacking zeaxanthin and lutein[J]. BMC Plant Biology, 2011, 11: 62. |
| 71 | XU Junchen, CHENG Jun, XIN Kai, et al. Strengthening flash light effect with a pond-tubular hybrid photobioreactor to improve microalgal biomass yield[J]. Bioresource Technology, 2020, 318: 124079. |
| 72 | IAMTHAM Siriluck, SORNCHAI Piyanast. Biofixation of CO2 from a power plant through large-scale cultivation of Spirulina maxima [J]. South African Journal of Botany, 2022, 147: 840-851. |
| 73 | 万伟华, 程军, 郭王彪. 我国微藻固定烟气CO2潜力时空格局分析[J]. 煤炭科学技术, 2022, 50(6): 107-116. |
| WAN Weihua, CHENG Jun, GUO Wangbiao. Analysis on temporal and spatial pattern of CO2 fixation ability from coal-fired flue gas fixed by microalgae in China[J]. Coal Science and Technology, 2022, 50(6): 107-116. | |
| 74 | Said ABU-GHOSH, FIXLER Dror, DUBINSKY Zvy, et al. Flashing light in microalgae biotechnology[J]. Bioresource Technology, 2016, 203: 357-363. |
| 75 | CHEN Yu, WANG Junfeng, ZHANG Wei, et al. Forced light/dark circulation operation of open pond for microalgae cultivation[J]. Biomass and Bioenergy, 2013, 56: 464-470. |
| 76 | XUE Shengzhang, SU Zhenfeng, CONG Wei. Growth of Spirulina platensis enhanced under intermittent illumination[J]. Journal of Biotechnology, 2011, 151(3): 271-277. |
| 77 | WOBBE Lutz, REMACLE Claire. Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories[J]. Journal of Biotechnology, 2015, 201: 28-42. |
| 78 | SCHULZE Peter S C, BARREIRA Luísa A, PEREIRA Hugo G C, et al. Light emitting diodes (LEDs) applied to microalgal production[J]. Trends in Biotechnology, 2014, 32(8): 422-430. |
| 79 | GLEMSER M, HEINING M, SCHMIDT J, et al. Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: Current state and perspectives[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1077-1088. |
| 80 | YU Binqi, QIAN Shouyuan, LIU Qing, et al. The response of bio-component production of Nannochloris oculata to the combinations of monochromatic light[J]. Journal of Ocean University of China, 2022, 21(1): 243-251. |
| 81 | QIU Renhe, GAO Song, LOPEZ Paola A, et al. Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana [J]. Algal Research, 2017, 28: 192-199. |
| 82 | 陈霖, 李林声, 王明兹, 等. 利用甲醇厂CO2尾气培养小球藻[J]. 食品与发酵工业, 2012, 38(9): 22-27. |
| CHEN Lin, Li Linsheng, WANG Mingzi, et al. Cultivation of Chlorella sp. with flue gas derived from a methanol plant[J]. Food and Fermentation Industries, 2012, 38(9): 22-27. | |
| 83 | JIANG Yinli, ZHANG Wei, WANG Junfeng, et al. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus [J]. Bioresource Technology, 2013, 128: 359-364. |
| 84 | HE Sirong, BARATI Bahram, HU Xun, et al. Carbon migration of microalgae from cultivation towards biofuel production by hydrothermal technology: A review[J]. Fuel Processing Technology, 2023, 240: 107563. |
| 85 | BARTEN Robin, DJOHAN Yovita, EVERS Wendy, et al. Towards industrial production of microalgae without temperature control: The effect of diel temperature fluctuations on microalgal physiology[J]. Journal of Biotechnology, 2021, 336: 56-63. |
| 86 | DUARTE Jessica Hartwig, DE MORAIS Etiele Greque, RADMANN Elisângela Martha, et al. Biological CO2 mitigation from coal power plant by Chlorella fusca and Spirulina sp.[J]. Bioresource Technology, 2017, 234: 472-475. |
| 87 | QI Feng, WU Daoji, MU Ruimin, et al. Characterization of a microalgal UV mutant for CO2 biofixation and biomass production[J]. BioMed Research International, 2018, 2018(1): 4375170. |
| 88 | ZHU Yanxia, CHENG Jun, ZHANG Ze, et al. Mutation of Arthrospira platensis by gamma irradiation to promote phenol tolerance and CO2 fixation for coal-chemical flue gas reduction[J]. Journal of CO2 Utilization, 2020, 38: 252-261. |
| 89 | CHENG Jun, LU Hongxiang, HE Xin, et al. Mutation of Spirulina sp. by nuclear irradiation to improve growth rate under 15% carbon dioxide in flue gas[J]. Bioresource Technology, 2017, 238: 650-656. |
| 90 | SONG Chunfeng, HAN Xiaoxuan, YIN Qingrong, et al. Performance intensification of CO2 absorption and microalgae conversion (CAMC) hybrid system via low temperature plasma (LTP) treatment[J]. Science of the Total Environment, 2021, 801: 149791. |
| 91 | CHENG Jun, HUANG Yun, FENG Jia, et al. Mutate Chlorella sp. by nuclear irradiation to fix high concentrations of CO2 [J]. Bioresource Technology, 2013, 136: 496-501. |
| 92 | XIN Kai, GUO Ruhan, ZOU Xiangbo, et al. CO2 gradient domestication improved high-concentration CO2 tolerance and photoautotrophic growth of Euglena gracilis [J]. Science of the Total Environment, 2023, 868: 161629. |
| 93 | CHENG Jun, LI Ke, YANG Zongbo, et al. Gradient domestication of Haematococcus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield[J]. Bioresource Technology, 2016, 216: 340-344. |
| 94 | WANG Zhenyi, CHENG Jun, SONG Wenlu, et al. CO2 gradient domestication produces gene mutation centered on cellular light response for efficient growth of microalgae in 15% CO2 from flue gas[J]. Chemical Engineering Journal, 2022, 429: 131968. |
| 95 | WANG Hui, GAO Lili, CHEN Lin, et al. Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus [J]. Bioresource Technology, 2013, 142: 39-44. |
| 96 | FU Jingwei, HUANG Yun, LIAO Qiang, et al. Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with airfoil-shaped deflectors[J]. Bioresource Technology, 2021, 337: 125355. |
| 97 | CHENG Jun, GUO Wangbiao, AMEER ALI Kubar, et al. Promoting helix pitch and trichome length to improve biomass harvesting efficiency and carbon dioxide fixation rate by Spirulina sp. in 660m2 raceway ponds under purified carbon dioxide from a coal chemical flue gas[J]. Bioresource Technology, 2018, 261: 76-85. |
| 98 | CHENG Jun, MIAO Yi, GUO Wangbiao, et al. Reduced generation time and size of carbon dioxide bubbles in a volute aerator for improving Spirulina sp. growth[J]. Bioresource Technology, 2018, 270: 352-358. |
| 99 | YANG Zongbo, CHENG Jun, LIU Jianzhong, et al. Improving microalgal growth with small bubbles in a raceway pond with swing gas aerators[J]. Bioresource Technology, 2016, 216: 267-272. |
| 100 | DE MORAIS Michele Greque, VARGAS Bruna Pereira, SILVA VAZ Bruna DA, et al. Advances in the synthesis and applications of nanomaterials to increase CO2 biofixation in microalgal cultivation[J]. Clean Technologies and Environmental Policy, 2023, 25(2): 617-632. |
| 101 | XU Junchen, CHENG Jun, WANG Yali, et al. Strengthening CO2 dissolution with zeolitic imidazolate framework-8 nanoparticles to improve microalgal growth in a horizontal tubular photobioreactor[J]. Chemical Engineering Journal, 2021, 405: 126062. |
| 102 | CHENG Jun, ZHU Yanxia, LI Ke, et al. Calcinated MIL-100(Fe) as a CO2 adsorbent to promote biomass productivity of Arthrospira platensis cells[J]. Science of the Total Environment, 2020, 699: 134375. |
| 103 | 朱颜霞, 张泽, 程军, 等. 煅烧沸石咪唑骨架吸附烟气CO2促进节旋藻生长固碳[J]. 中国电机工程学报, 2021, 41(4): 1242-1249, 1531. |
| ZHU Yanxia, ZHANG Ze, CHENG Jun, et al. Improved carbon fixation of Arthrospira platensis by calcinated ZIF-8 as CO2 adsorbents[J]. Proceedings of the CSEE, 2021, 41(4): 1242-1249, 1531. | |
| 104 | GONÇALVES Ana L, ALMEIDA Filipe, ROCHA Fernando A, et al. Improving CO2 mass transfer in microalgal cultures using an oscillatory flow reactor with smooth periodic constrictions[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106505. |
| 105 | GUO Wangbiao, CHENG Jun, LIU Shuzheng, et al. A novel porous nickel-foam filled CO2 absorptive photobioreactor system to promote CO2 conversion by microalgal biomass[J]. Science of the Total Environment, 2020, 713: 136593. |
| 106 | SIDDIKI Sk Yasir Arafat, MOFIJUR M, Senthil KUMAR P, et al. Microalgae biomass as a sustainable source for biofuel, biochemical and biobased value-added products: An integrated biorefinery concept[J]. Fuel, 2022, 307: 121782. |
| 107 | BORELLA Lisa, DIOTTO Daniele, BARBERA Elena, et al. Application of flashing blue-red LED to boost microalgae biomass productivity and energy efficiency in continuous photobioreactors[J]. Energy, 2022, 259: 125087. |
| 108 | LIU Wen, CHEN Yu, WANG Junfeng, et al. Biomass productivity of Scenedesmus dimorphus (Chlorophyceae) was improved by using an open pond-photobioreactor hybrid system[J]. European Journal of Phycology, 2019, 54(2): 127-134. |
| 109 | RAMANNA Luveshan, RAWAT Ismail, Faizal BUX. Light enhancement strategies improve microalgal biomass productivity[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 765-773. |
| [1] | 韩伟, 韩恒文, 程薇, 汤玮健. 碳中和目标驱动下生物质燃料技术研究进展[J]. 化工进展, 2024, 43(5): 2463-2474. |
| [2] | 白丽菊, 侯博, 江波, 陈思铭. 化学吸收剂强化微藻固碳研究进展[J]. 化工进展, 2020, 39(S2): 106-114. |
| [3] | 陈智杰1,姜泽毅1,2,张欣欣1,3,张欣茹1. 微藻培养光生物反应器内传递现象的研究进展[J]. 化工进展, 2012, 31(07): 1407-1413. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |