化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5251-5269.DOI: 10.16085/j.issn.1000-6613.2021-0653
收稿日期:
2021-03-30
修回日期:
2021-05-20
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
刘波,张深根
作者简介:
何学峰(1995—),男,硕士研究生,研究方向为金属资源再生。E-mail:基金资助:
HE Xuefeng(), LIU Bo(), ZHANG Shengen()
Received:
2021-03-30
Revised:
2021-05-20
Online:
2021-10-10
Published:
2021-10-25
Contact:
LIU Bo,ZHANG Shengen
摘要:
以废杂铝为原料生产再生铝,可减少铝土矿消耗,避免电解铝生产过程的高能耗和高排放。由于来源复杂、预处理难度高,废杂铝中不可避免地会混入大量铁杂质。含铁杂质会形成α-Fe、β-Fe、δ-Fe和π-Fe富铁金属间化合物,会显著减低再生铝合金的力学、抗腐蚀性能,恶化铸造性能,导致再生铝产品降级使用。本文综述了铝合金中含铁杂质去除技术的研究现状,主要包括离心法、电磁法、过滤法、熔剂法、变质元素法、超声波处理、热处理法等,并展望了未来除铁技术的的发展趋势。文章提出未来重点应在晶体生长、凝固理论基础上引入集成计算方法,探索铝合金中铁元素的传质、扩散、富集、偏析、迁移规律,这对富铁相控制有很强的指导意义;开发除铁率高、绿色环保的新型除铁熔剂,以提高熔剂吸附Fe杂质的能力、与Fe杂质反应的动力学进程、与铝熔体反应的均匀性和稳定性。
中图分类号:
何学峰, 刘波, 张深根. 再生铝合金中含Fe杂质的控制技术现状[J]. 化工进展, 2021, 40(10): 5251-5269.
HE Xuefeng, LIU Bo, ZHANG Shengen. Current status of control technology of Fe impurity in recycled aluminum alloy[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5251-5269.
46 | PUNCREOBUTR C, LEE P D, KAREH K M, et al. Influence of Fe-rich intermetallics on solidification defects in Al-Si-Cu alloys[J]. Acta Materialia, 2014, 68: 42-51. |
47 | HU Chen, LUO Wenfeng, ZHAO Haidong. Three-dimensional characteristics of Fe-rich intermetallics in gravity-cast Al-6Si alloys[J]. China Foundry, 2017, 14(5): 379-385. |
48 | 骆文锋. 铸造铝硅合金富铁相三维特征及其对微观孔洞的影响[D]. 广州: 华南理工大学, 2017. |
LUO Wenfeng. The 3D characterization of Fe-rich intermetallics and its effect on microporosity in aluminum-silicon alloys[D]. Guangzhou: South China University of Technology, 2017. | |
49 | HASSANI A, RANJBAR K, SAMI S. Microstructural evolution and intermetallic formation in Al-8wt% Si-0.8wt% Fe alloy due to grain refiner and modifier additions[J]. International Journal of Minerals, Metallurgy, and Materials, 2012, 19(8): 739-746. |
50 | GANJEHFARD K, TAGHIABADI R, NOGHANI M T, et al. Tensile properties and hot tearing susceptibility of cast Al-Cu alloys containing excess Fe and Si[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(4): 718-728. |
51 | SHEN H, YANG W D, LIANG H, et al. Research advance in harmful effects and removal of impurity Fe from Al and Al alloys[J]. Advanced Materials Research, 2011, 295/296/297: 751-759. |
52 | 孙士瞳, 郭占成, 唐惠庆, 等. 利用超重力分离铝熔体中富铁相[C]//2012年全国冶金物理化学学术会议, 2012: 5. |
SUN Shitong, GUO Zhancheng, TANG Huiqing, et al. Separation of iron-rich phases in aluminum melt by high gravity[C]// 2012 National Conference on Metallurgical Physics and Chemistry, 2012: 5. | |
53 | ZHAO L X, GUO Z C, WANG Z, et al. Removal of low-content impurities from Al by super-gravity[J]. Metallurgical and Materials Transactions B, 2010, 41(3): 505-508. |
54 | KIM S W, IM U H, CHA H C, et al. Removal of primary iron rich phase from aluminum-silicon melt by centrifugal separation[J]. China Foundry, 2013, 10(2): 112-117. |
55 | KRÄUTLEIN C, FRIEDRICH B. Removal of intermetallic precipitates from Al-melts by immersed centrifugation technology[C]// Proceedings of European Metallurgical Conference, 2005: 1593-1573. |
1 | 黄伯云, 李成功, 石力开, 等. 中国材料工程大典 第4卷. 有色金属材料工程(上)[M]. 北京: 化学工业出版社, 2006: 11. |
HUANG Boyun, LI Chenggong, SHI Likai, et al. China materials engineering canon. Volume4. Nonferrous metal materials engineering (I) [M]. Beijing: Chemical Industry Press, 2006: 11. | |
56 | XU Zhenming,LI Tianxiao, ZHOU Yaohe. Elimination of Fe in Al-Si cast alloy scrap by electromagnetic filtration[J]. Journal of Materials Science, 2003, 38(22): 4557-4565. |
57 | XIAO T, LÜ G Q, BAO Y, et al. Electromagnetic separation of coarse Al-Si melts: the migration behavior of iron-rich phase and continuous growth of primary silicon[J]. Journal of Alloys and Compounds, 2019, 819: 153006. |
58 | 鲍雨. 电磁分离一次铝硅合金中硅和铁相的研究[D]. 昆明: 昆明理工大学, 2019. |
BAO Yu. Electromagnetic separation of silicon and iron phases in primary aluminum-silicon alloys[D]. Kunming: Kunming University of Science and Technology, 2019. | |
59 | 赵世民, 王毅博, 鲍雨, 等. 一次铝硅合金中的硅和富铁相电磁分离研究[J]. 热加工工艺, 2021, 50(1): 10-14. |
ZHAO Shimin, WANG Yibo, BAO Yu, et al. Study on electromagnetic separation of Si and Fe-rich phases in primary Al-Si alloy[J]. Hot Working Technology, 2021, 50(1): 10-14. | |
2 | 邓旭. 再生铝行业现状及未来发展趋势[J]. 资源再生, 2020(11): 27-29. |
DENG Xu. Current status and future development trend of secondary aluminum industry[J]. Resources Regeneration, 2020(11): 27-29. | |
3 | 张海坤, 胡鹏, 姜军胜, 等. 铝土矿分布特点、主要类型与勘查开发现状[J]. 中国地质, 2021, 48(1): 68-81. |
ZHANG H K, HU P, JIANG J S, et al. Distribution, genetic types and current situation of exploration and development of bauxite resources[J]. Geology in China, 2021, 48(1): 68-81. | |
60 | BAO Y, LÜ G Q, WANG Y B, et al. Simultaneous removal of silicon and iron-rich phases from coarse Al-Si alloys using manganese under electromagnetic field[J]. Metallurgical and Materials Transactions B, 2018, 49(6): 3413-3423. |
61 | LEE G, KIM M, PARK J. Elimination of iron in molten aluminum scrap by electromagnetic stirring technique[C]// Fernand Marquis. The 8th Pacific Rim International Congress on Advanced Materials and Processing, Hawaii: John Wiley & Sons, 2013:1041-1047. |
62 | 唐奕, 党惊知, 杨晶, 等. 铝合金泡沫陶瓷过滤工艺研究[J]. 热加工工艺, 2010, 39(1): 58-60. |
TANG Y, DANG J Z, YANG J, et al. Technology research of foam ceramic filter to aluminum alloy[J]. Hot Working Technology, 2010, 39(1): 58-60. | |
63 | VOIGT C, DITSCHERLEIN L, WERZNER E, et al. Wettability of AlSi7Mg alloy on alumina, spinel, mullite and rutile and its influence on the aluminum melt filtration efficiency[J]. Materials & Design, 2018, 150: 75-85. |
64 | BAO S, SYVERTSEN M, KVITHYLD A, et al. Wetting behavior of aluminium and filtration with Al2O3 and SiC ceramic foam filters[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3922-3928. |
65 | DAMOAH L N W, ZHANG L F. Removal of inclusions from aluminum through filtration[J]. Metallurgical and Materials Transactions B, 2010, 41(4): 886-907. |
66 | 庞士鹏, 张林, 周成双. 再生Al-Cu-Si系铝合金除铁方法: CN107619959B[P]. 2019-04-26. |
PANG Shipeng, ZHANG Lin, ZHOU Chengshuang. Iron removal method for regenerated Al-Cu-Si aluminum alloy: CN107619959B[P]. 2019-04-26. | |
67 | DE MORAES H L, DE OLIVEIRA J R, ESPINOSA D C R, et al. Removal of iron from molten recycled aluminum through intermediate phase filtration[J]. Materials Transactions, 2006, 47(7): 1731-1736. |
68 | 高建卫. 硼化物对铝熔体中杂质铁的净化作用及机理[D]. 上海: 上海交通大学, 2009. |
GAO Weijian. Effect and mechanism of iron removal from aluminum melt by boron compounds[D]. Shanghai: Shanghai Jiao Tong University, 2009. | |
69 | 谭喜平, 郑开宏, 张新明, 等. 氧化硼对再生A356铝合金中杂质铁的影响[J]. 材料导报, 2013, 27(22): 92-95. |
TAN Xiping, ZHENG Kaihong, ZHANG Xinming, et al. Effect of boron oxide on impurity iron in recycled A356 aluminum alloy[J]. Materials Review, 2013, 27(22): 92-95. | |
70 | 谭喜平, 郑开宏, 宋东福, 等. Al-3B中间合金添加量对再生铸造铝合金中杂质铁含量的影响[J]. 中国有色金属学报, 2014, 24(6): 1401-1407. |
TAN X P, ZHENG K H, SONG D F, et al. Effects of Al-3B master alloy addition on impurity iron content of recycled casting aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(6): 1401-1407. | |
71 | 何健亭. 铸造铝合金中铁杂质的去除技术研究[D]. 广州: 华南理工大学, 2012. |
HE Jianting. Study on removal technology of iron impurity in cast aluminum alloy[D]. Guangzhou: South China University of Technology, 2012. | |
4 | 文提. 浅析电解铝的成本控制[J]. 中外企业家, 2019(12): 123-124. |
WEN Ti. Analysis on cost control of electrolytic aluminum[J]. Chinese and Foreign Entrepreneurs, 2019(12): 123-124. | |
72 | 庞士鹏. 铸造Al-Si合金铁相杂质去除技术研究[D]. 杭州: 浙江工业大学, 2019. |
PANG Shipeng. Research on iron phase impurity removal technology of casting Al-Si alloy[D]. Hangzhou: Zhejiang University of Technology, 2019. | |
73 | CHEN C, WANG J, SHU D, et al. A novel method to remove iron impurity from aluminum[J]. Materials Transactions, 2011, 52(8): 1629-1633. |
74 | 谭喜平, 郑开宏, 戚文军, 等. 再生铝合金除铁技术的研究现状与展望[J]. 铸造技术, 2013, 34(11): 1446-1448. |
TAN Xiping, ZHENG Kaihong, QI Wenjun, et al. Current and prospect of removal technologies of Fe from Al-Si alloys[J]. Foundry Technology, 2013, 34(11): 1446-1448. | |
75 | 张树玲, 靳艺, 陈炜晔, 等. 稀土Y对再生铝合金ADC12含Fe相演变的影响[J]. 热加工工艺, 2020, 49(8): 41-45. |
ZHANG S L, JIN Y, CHEN W Y, et al. Effects of rare earth Y on evolution of Fe-containing phase in recycled aluminum alloy ADC12[J]. Hot Working Technology, 2020, 49(8): 41-45. | |
76 | DING W W, ZHAO X Y, CHEN T L, et al. Effect of rare earth Y and Al-Ti-B master alloy on the microstructure and mechanical properties of 6063 aluminum alloy[J]. Journal of Alloys and Compounds, 2020, 830: 154685. |
5 | MAUNG K N, YOSHIDA T, LIU G, et al. Assessment of secondary aluminum reserves of nations[J]. Resources Conservation and Recycling, 2017, 126: 34-41. |
6 | 邵鹿峰. 我国再生铝产业现状及发展对策[J]. 世界有色金属, 2020(8): 172-173. |
SHAO Lufeng. Present situation and development countermeasure of reclaimed aluminum industry in China[J]. World Nonferrous Metals, 2020(8): 172-173. | |
7 | DAS S K. Designing aluminum alloys for a recycle-friendly world[J]. Light Metal Age, 2006, 64(3): 26-32. |
77 | 张镇凯, 郭永春, 夏峰, 等. 富Ce稀土与超声场对Al-Si合金中富铁相的影响[J]. 稀有金属, 2019, 43(2): 219-224. |
ZHANG Zhenkai, GUO Yongchun, XIA Feng, et al. Effect of Ce-rich rare earth and ultrasonic field on Fe-rich phase in Al-Si alloy[J]. Rare Metals, 2019, 43(2): 219-224. | |
78 | JIANG H X, LI S X, ZHENG Q J, et al. Effect of minor lanthanum on the microstructures, tensile and electrical properties of Al Fe alloys[J]. Materials & Design, 2020, 195: 108991. |
79 | 于小健, 宁萌, 周文军, 等. 稀土Y变质对Al-7Si-0.35Mg合金中富铁相的影响机制[J]. 兵器材料科学与工程, 2018, 41(1): 38-42. |
YU X J, NING M, ZHOU W J, et al. Influence mechanism of rare earth yttrium modification on Fe-rich phase in Al-7Si-0.35Mg alloy[J]. Ordnance Material Science and Engineering, 2018, 41(1): 38-42. | |
80 | 张欣, 王泽华, 邵佳, 等. 稀土对Al-3.0wt.%Mg合金微观组织结构的影响和作用机理[J]. 铸造, 2020, 69(1): 51-57. |
ZHANG X, WANG Z H, SHAO J, et al. Effect of rare earth on microstructure of Al-3.0wt.%Mg alloy and its action mechanism[J]. Foundry, 2020, 69(1): 51-57. | |
81 | KAUR P, DWIVEDI D K, PATHAK P M. Effects of electromagnetic stirring and rare earth compounds on the microstructure and mechanical properties of hypereutectic Al-Si alloys[J]. International Journal of Advanced Manufacturing Technology, 2012, 63(1/2/3/4): 415-420. |
8 | GAUSTAD G, OLIVETTI E, KIRCHAIN R. Improving aluminum recycling: a survey of sorting and impurity removal technologies[J]. Resources Conservation and Recycling, 2012, 58: 79-87. |
9 | CAPUZZI S, TIMELLI G. Preparation and melting of scrap in aluminum recycling: a review[J]. Metals, 2018, 8(4): 249. |
10 | NAKAJIMA K, TAKEDA O, MIKI T, et al. Thermodynamic analysis of contamination by alloying elements in aluminum recycling[J]. Environmental Science & Technology, 2010, 44(14): 5594-5600. |
11 | PARASKEVAS D, KELLENS K, DEWULF W, et al. Environmental modelling of aluminium recycling: a life cycle assessment tool for sustainable metal management[J]. Journal of Cleaner Production, 2015, 105: 357-370. |
12 | 李瑶. 铁坩埚对熔炼ADC12增铁性能的影响[J]. 中国新技术新产品, 2015(9): 56-56. |
LI Yao. Effect of iron crucible on iron enhancement performance of ADC12 smelting[J]. New Technology & New Products of China, 2015(9): 56-56. | |
13 | 张耀先. 富铁相在镁合金熔体中的沉淀行为与演变机制研究[D]. 济南: 山东大学, 2016. |
ZHANG Yaoxian. Segregation behavior and evolution mechanism of iron-rich phases in molten magnesium alloys[D]. Jinan: Shandong University, 2016. | |
14 | JAMES S. Intermetallic phase selection in dilute Al-Fe-Si alloys[D]. England: University of Leeds, 1996. |
15 | 秦鹏. 再生铝合金除铁技术探索[J]. 产业与科技论坛, 2018, 17(10): 76-77. |
QIN P. Research on iron removal technology of recycled aluminum alloy[J]. Industrial & Science Tribune, 2018, 17(10): 76-77. | |
82 | 唐鹏, 刘裔源, 黄惠毅, 等. 稀有元素Er对Al-Si-Fe-Co合金组织与性能的影响[J]. 稀有金属材料与工程, 2020, 49(10): 3528-3535. |
TANG Peng, LIU Yiyuan, HUANG Huiyi, et al.Effect of rare element er on microstructure and properties of Al-Si-Fe-Co alloy[J]. Rare Metal Materials and Engineering, 2020, 49(10): 3528-3535. | |
16 | LIU Tao, KARKKAINEN M, NASTAC L, et al. Iron-rich intermetallics in high pressure die cast A383 aluminum alloys[J]. Intermetallics, 2020, 126: 106814. |
17 | BELMARES P S, ZALDIVAR C A A. Addition of iron for the removal of the β-AlFeSi intermetallic by refining of α-AlFeSi phase in an Al-7.5Si-3.6Cu alloy[J]. Materials Science and Engineering B, 2010, 174(1/2/3): 191-195. |
18 | KHALIFA W, SAMUEL F H, GM-NSERC-UQAC, et al. Nucleation of Fe-intermetallic phases in the Al-Si-Fe alloys[J]. Metallurgical and Materials Transactions A, 2005, 36A(4): 1017-1032. |
83 | TANG Qi, ZHAO Jianhua, WANG Tao, et, al. The effects of neodymium addition on the intermetallic microstructure and mechanical properties of Al-7Si-0.3Mg-0.3Fe alloys[J]. Journal of Alloys and Compounds, 2018, 741: 161-173. |
84 | 程炳超. 铝合金杂质元素铁和钙的无害化研究[D]. 北京: 北京交通大学, 2016. |
19 | BJURENSTEDT A, CASARI D, SEIFEDDINE S, et al. In-situ study of morphology and growth of primary α-Al(FeMnCr)Si intermetallics in an Al-Si alloy[J]. Acta Materialia, 2017, 130: 1-9. |
20 | QUE Z P, MENDIS C. Heterogeneous nucleation and phase transformation of Fe-rich intermetallic compounds in Al-Mg-Si alloys[J]. Journal of Alloys and Compounds, 2020, 836: 155515. |
21 | FENG S K, LIOTTI E, LUI A, et al. In-situ X-ray radiography of primary Fe-rich intermetallic compound formation[J]. Acta Materialia, 2020, 196: 759-769. |
22 | 周鹏飞, 陆从相. 汽车用铝合金富铁相形貌研究[J]. 中国铸造装备与技术, 2017(5): 8-10. |
ZHOU P F, LU C X. Study on the iron-rich phase of automobile aluminum[J]. China Foundry Machinery & Technology, 2017(5): 8-10. | |
23 | FENG S K, CUI Y, LIOTTI E, et al. In-situ X-ray radiography of twinned crystal growth of primary Al13Fe4[J]. Scripta Materialia, 2020, 184: 57-62. |
24 | WANG J S, LEE P D, HAMILTON R W, et al. The kinetics of Fe-rich intermetallic formation in aluminium alloys: in situ observation[J]. Scripta Materialia, 2009, 60(7): 516-519. |
25 | PUNCREOBUTR C, PHILLION A B, FIFE J L, et al. In situ quantification of the nucleation and growth of Fe-rich intermetallics during Al alloy solidification[J]. Acta Materialia, 2014, 79: 292-303. |
26 | 杨宁源, 周慧慧, 张志豪. Fe含量对Al-1.04wt.%Mg-0.64wt.%Si-0.23wt.%Cu合金析出相、力学性能和腐蚀性能的影响[J]. 材料科学与工艺, 2021, 29(3): 64-74. |
YANG Ningyuan, ZHOU Huizhui, ZHANG Zhihao. Effect of Fe content on precipitate, mechanical properties and corrosion properties of Al-1.04wt%Mg-0.64wt%Si-0.23wt%Cu alloy[J]. Materials Science and Technology, 2021, 29(3): 64-74. | |
27 | 陈立, 陈胜迁, 陈涛, 等. Fe含量对热挤压再生铝合金组织和性能的影响[J]. 特种铸造及有色合金, 2020, 40(3): 239-243. |
CHEN Li, CHEN Shengqian, CHEN Tao, et al. Effects of Fe content on microstructure and propreties of hot extrusion recycled aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2020, 40(3): 239-243. | |
84 | CHENG Bingchao. Harmless study on impurity elements of iron and calcium in aluminum alloy[D]. Beijing: Beijing Jiaotong University, 2016. |
85 | DHINAKAR A, LU P Y, TANG N K, et al. Iron reduction in 356 secondary aluminum alloy by Mn and Cr addition for sediment separation[J]. International Journal of Metalcasting, 2020, 15: 182-192. |
86 | 黄惠毅, 刘裔源, 唐鹏, 等. Co元素对Al-10Si-1.5Fe合金显微组织和力学性能的影响[J]. 材料导报, 2020, 34(16): 16087-16093. |
HUANG Huiyi, LIU Yiyuan, TANG Peng, et al. Effect of Co element on microstructure and mechanical properties of Al-10Si-1.5Fe alloy[J]. Materials Review, 2020, 34(16): 16087-16093. | |
87 | FAISAL M, MAZNI N, RAO A, et al. Effect of 1.0% Ni on high-temperature impression creep and hardness of recycled aluminium alloy with high Fe content[C]// 4th Asia Pacific Conference on Manufacturing Systems and the 3rd International Manufacturing Engineering Conference, Bristol: IOP Publishing Ltd., 2018: 012066. |
88 | LIN B, LI H Y, XU R, et al. Effects of vanadium on modification of iron-rich intermetallics and mechanical properties in A356 cast alloys with 1.5wt.% Fe[J]. Journal of Materials Engineering and Performance, 2019, 28(1): 475-484. |
89 | SANTOS J, JARFORS A E W, DAHLE A K. Formation of iron-rich intermetallic phases in Al-7Si-Mg: Influence of cooling rate and strontium modification[J]. Metallurgical and Materials Transactions A, 2019, 50(9): 4148-4165. |
90 | WANG M, XU W, HAN Q Y. Study of refinement and morphology change of AlFeSi phase in A380 alloy due to addition of Ca, Sr/ Ca, Mn and Mn, Sr[J]. Materials Transactions, 2016, 57(9): 1509-1513. |
91 | OLIVEIRA R, KAKITANI R, RAMOS L R, et al. The roles of Mn and Ni additions to Fe-contaminated Al in neutralizing Fe and stabilizing the cellular α-Al microstructure[J]. Journal of Sustainable Metallurgy, 2019, 5(4): 561-580. |
92 | 于国军. 铝合金中除铁及铁相变质研究[D]. 广州:华南理工大学, 2013. |
YU Guojun. Research on iron removal and metamorphism of iron phase in aluminum alloy[D]. Guangzhou: South China University of Technology, 2013. | |
93 | KUCHARIKOVÁ L, MAZUR M, TILLOVÁ E, et al. Fracture behavior of the secondary A226 cast alloy with 0.9% Fe[J]. Procedia Structural Integrity, 2018, 13: 1577-1582. |
94 | XU Zhen, ZHANG Xinyu, WANG Hongbin, et al. Effect of Mn/Fe ratio on the microstructure and properties of 6061 sheets obtained by twin-roll cast[J]. Materials Characterization, 2020, 168: 110536. |
95 | YANG Wenchao, GAO Feng, JI Shouxun. Formation and sedimentation of Fe-rich intermetallics in Al-Si-Cu-Fe alloy[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5): 1704-1714. |
96 | 杨承志, 龙思远, 王朋, 等. 硼化物和锶对再生Al-Si合金中富铁相的影响[J]. 材料热处理学报, 2016, 37(1): 34-39. |
YANG C Z, LONG S Y, WANG P, et al. Effect of B compounds and Sr on Fe-rich intermetallics in secondary Al-Si alloy[J]. Transactions of Materials and Heat Treatment, 2016, 37(1): 34-39. | |
97 | 唐鹏. 富铁铝合金细化变质及沉降行为的研究[D]. 广州: 华南理工大学, 2017. |
TANG Peng. Study on refinement, metamorphism and settlement behavior of Fe-rich aluminum alloy[D]. Guangzhou: South China University of Technology, 2017. | |
98 | RODRÍGUEZ S H, GOYTIA REYES R E, DWIVEDI D K, et al. The effect of Al-5Ti-1B on microstructure and mechanical properties of Al-12Si-xFe alloy[J]. Materials and Manufacturing Processes, 2012, 27(6): 599-604. |
99 | LIN Chong, WU Shusen, Shulin LÜ, et al. Effects of ultrasonic vibration and manganese on microstructure and mechanical properties of hypereutectic Al-Si alloys with 2%Fe[J]. Intermetallics, 2013, 32(1): 176-183. |
100 | ZHAO Y L, SONG D F, LIN B, et al. 3D characterization of ultrasonic melt processing on the microstructural refinement of Al-Cu alloys using synchrotron X-ray tomography[J]. Materials Characterization, 2019, 153: 354-365. |
101 | KOTADIA H R, QIAN M, DAS A. Microstructural modification of recycled aluminium alloys by high-intensity ultrasonication: Observations from custom Al-2Si-2Mg-1.2Fe-(0.5,1.0)Mn alloys[J]. Journal of Alloys & Compounds, 2020, 823: 153833. |
102 | ZHONG Gu, WU Shusen, AN Ping, et al. Microstructure and properties of high silicon aluminum alloy with 2% Fe prepared by rheo-casting[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(9): 1603-1607. |
103 | ZHANG Y B, KATERYNA S, LI T J. Effect of ultrasonic treatment on formation of iron-containing intermetallic compounds in Al-Si alloys[J]. China Foundry, 2016, 13(5): 316-321. |
104 | 夏峰, 闫志义, 梁民宪, 等. 熔体超声处理对Al-Si合金组织和力学性能的影响[J]. 热加工工艺, 2021, 50(3): 60-63. |
XIA Feng, YAN Zhiyi, LIANG Minxian, et al. Effect of melt ultrasonic treatment on microstructure and mechanical properties of Al-Si alloy[J]. Hot Working Technology, 2021, 50(3): 60-63. | |
105 | 马世旋. 钨对A356铝合金富铁相形貌的影响[D]. 太原: 中北大学, 2020. |
MA Shixuan. Effect of modification of W on the morphology of iron-rich phase of A356 aluminum alloy[D]. Taiyuan: North University of China, 2020. | |
106 | LIN C, WU S S, ZHONG G, et al. Effect of ultrasonic vibration on Fe-containing intermetallic compounds of hypereutectic Al-Si alloys with high Fe content[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1245-1252. |
107 | ZHANG Yubo, Jinchuan JIE, GAO Yuan, et.al. Effects of ultrasonic treatment on the formation of iron-containing intermetallic compounds in Al-12%Si-2%Fe alloys[J]. Intermetallics, 2013, 42: 120-125. |
108 | SAGHAFIAN H, SHABESTARI S G, GHADAMI S, et al. Effects of iron, manganese, and cooling rate on microstructure and dry sliding wear behavior of LM13 aluminum alloy[J]. Tribology Transactions, 2017, 60(5): 888-901. |
109 | 张海锋, 陈琴. 改性3003铝合金中粗大金属间化合物的形成机理及解决措施[J]. 机械工程材料, 2018, 42(2): 47-51, 57. |
ZHANG H F, CHEN Q. Formation mechanism and solutions of coarse intermetallic compound in modified 3003 aluminum alloy[J]. Materials for Mechanical Engineering, 2018, 42(2): 47-51, 57. | |
110 | CINKILIC E, RIDGEWAY C D, YAN X, et al. A formation map of iron-containing intermetallic phases in recycled cast aluminum alloys[J]. Metallurgical and Materials Transactions A, 2019, 50(12): 5945-5956. |
111 | LIU Y, LUO L, HAN C, et al. Effect of Fe, Si and cooling rate on the formation of Fe-and Mn-rich intermetallics in Al-5Mg-0.8Mn alloy[J]. Journal of Materials Science & Technology, 2016, 32(4): 305-312. |
112 | FARINA M E, BELL P, FRIC C R, et al. Effects of solidification rate in the microstructure of Al-Si5Cu3 aluminum cast alloy[J]. Materials Research, 2017, 20(S2): 273-278. |
113 | SOHAIL M, SHUBHAM G, DEJIANG L, et al. Cyclic deformation behavior of a heat-treated die-cast Al-Mg-Si-based aluminum alloy[J]. Materials, 2020, 13(18):4115. |
114 | WU X, ZHANG H, MA Z, et al. Interactions between Fe-rich intermetallics and Mg-Si phase in Al-7Si-xMg alloys[J]. Journal of Alloys and Compounds, 2019, 786: 205-214. |
115 | LIU H B, SU H G, FU D F, et al. Phase evolution in AlSi20/8009 aluminum alloy during high temperature heating near melting point and cooling processes[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(5): 1157-1168. |
116 | SONG D F, WANG S C, ZHAO Y L, et al. Effect of melt holding on morphological evolution and sedimentation behavior of iron-rich intermetallic phases in Al-Si-Fe-Mn-Mg alloy[J]. Transactions of Nonferrous Metals Society of China, 2020, 30(1): 1-13. |
117 | PEREIRA L H, ASATO G H, OTANI L B, et al. Changing the solidification sequence and the morphology of iron-containing intermetallic phases in AA6061 aluminum alloy processed by spray forming[J]. Materials Characterization, 2018, 145: 507-515. |
118 | IRIZALP S G, SAKLAKOGLU N. Effect of Fe-rich intermetallics on the microstructure and mechanical properties of thixoformed A380 aluminum alloy[J]. Engineering Science and Technology, an International Journal, 2014, 17(2): 58-62. |
119 | LIN Chong, WU Shusen, Shulin LYU,et, al. Influence of high pressure and manganese addition on Fe-rich phases and mechanical properties of hypereutectic Al-Si alloy with rheo-squeeze casting[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(2): 253-262. |
28 | BJURENSTEDT A, GHASSEMALI E, SEIFEDDINE S, et al. The effect of Fe-rich intermetallics on crack initiation in cast aluminium: an in-situ tensile study[J]. Materials Science & Engineering, 2019, 756: 502-507. |
29 | 佘欢. Fe、Si杂质对7055铝合金组织与力学性能的影响[D]. 上海: 上海交通大学, 2017. |
SHE Huan. Influence of Fe and Si impurities on microstructures and mechanical properties of 7055 aluminum alloy[D]. Shanghai: Shanghai Jiao Tong University, 2017. | |
30 | 林波, 张卫文, 牛嘉运, 等. 铸造Al-Cu合金中富铁相对拉伸断裂行为的影响[J]. 稀有金属, 2017, 41(3): 225-232. |
LIN B, ZHANG W W, NIU J Y, et al. Tensile fracture behavior of Al-Cu cast alloys with iron-rich intermetallic[J]. Chinese Journal of Rare Metals, 2017, 41(3): 225-232. | |
31 | LIU Chaofeng, JIAO Xiangyi, NISHAT H, et al. Characteristics of Fe-rich intermetallics compounds and their influence on the cracking behavior of a newly developed high-pressure die cast Al-4Mg-2Fe alloy[J]. Journal of Alloys and Compounds, 2020, 854: 157121. |
32 | HU K, LIN C H, XIA S C, et al. Effect of Fe content on low cycle fatigue behavior of squeeze cast Al-Zn-Mg-Cu alloys[J]. Materials Characterization, 2020, 170: 110680. |
33 | 郑成坤. 压力和铁含量对Al-Zn-Mg-Cu合金低周疲劳行为的影响[D]. 广州: 华南理工大学, 2015. |
ZHENG Chengkun. The effect of pressure and Fe content on low cycle fatigue behaviour of Al-Zn-Mg-Cu alloy[D]. Guangzhou: South China University of Technology, 2015. | |
34 | ZÁVODSKÁ D, KUCHARIKOVÁ L, TILLOVÁ E, et al. The effect of iron content on fatigue lifetime of AlZn10Si8Mg cast alloy[J]. International Journal of Fatigue, 2019, 128: 105189. |
35 | TAGHIABADI R, GHASEMI H M. Dry sliding wear behaviour of hypoeutectic Al-Si alloys containing excess iron[J]. Materials Science & Technology, 2013, 25(8): 1017-1022. |
36 | WANG Qiuping, LU Lu, ZHOU Rongfeng, et al. Microstructures and wear behavior of the rheo-squeeze casting high silicon aluminium alloys pipe with the gradient structure[J]. Materials Research Express, 2018, 5(10): 106505. |
37 | 李妮, 董超芳, 满成, 等. 金属间化合物对铝合金表面点蚀行为与钝化膜结构的影响研究[C]//第十届全国腐蚀大会.中国腐蚀与防护学会, 2019. |
LI Ni, DONG Chaofang, MAN Cheng, et, al. Effect of intermetallic compounds on pitting behavior of aluminum alloy surface and structure of passivated film[C]//. The 10th National Corrosion Conference. Chinese Society for Corrosion and Protection, 2019. | |
38 | LERVIK A, DANBOLT T, FURU T, et, al. Comparing intergranular corrosion in Al-Mg-Si-Cu alloys with and without α-Al(Fe,Mn,Cu)Si particles[J]. Materials and Corrosion,2020,72(3): 1-10. |
39 | SEKHAR A P, SAMADDAR A, MANDAL A B, et al. Influence of ageing on the intergranular corrosion of an Al-Mg-Si alloy[J]. Metals and Materials International, 2020. DOI: 10.1007/s12540-020-00843-1. |
40 | ZOU Y C, YAN H, YU B B, et al. Effect of rare earth Yb on microstructure and corrosion resistance of ADC12 aluminum alloy[J]. Intermetallics, 2019, 110: 106487. |
41 | SUN Y W, PAN Q L, SUN Y Q, et al. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy[J]. Journal of Alloys & Compounds, 2019, 783: 329-340. |
42 | 王力, 董超芳, 张达威, 等. 合金元素对铝合金在泰国曼谷地区初期腐蚀行为的影响[J]. 金属学报, 2020, 56(1): 119-128. |
WANG L, DONG C F, ZHANG D W, et al. Effect of alloying elements on initial corrosion behavior of aluminum alloy in bangkok, Thailand[J]. Acta Metallurgica Sinica, 2020, 56(1): 119-128. | |
43 | LIANG M X, MELCHERS R. Two years pitting corrosion of AA5005-H34 aluminium alloy immersed in natural seawater: morphology characterisation[J]. Corrosion Engineering, Science and Technology, 2020, 55(8): 696-707. |
44 | 孙业赞, 于敞, 厉松春, 等.铁在铝硅合金中存在的形态及其作用分析[J]. 铸造, 1998(7): 44-48. |
SUN Yezan, YU Chang, LI Songchun, et, al. The morphology of iron in Al-Si alloy and its action analysis[J]. Foundry, 1998(7): 44-48. | |
45 | LU L, DAHLE A K. Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys[J]. Metallurgical & Materials Transactions A, 2005, 36(13): 819-835. |
[1] | 陈奇志, 周毅林, 刘作华, 陈南雄, 杨勇, 魏红军, 童张法. 变频刚柔搅拌反应器强化锰矿浸出及除铁过程[J]. 化工进展, 2021, 40(6): 3083-3090. |
[2] | 张翱, 房建宇, 刘博, 赵轩刚, 黄力, 黄鹤, 冉良涛, 苏碧云. 气田采出水复合除铁、除钙工艺[J]. 化工进展, 2021, 40(6): 3091-3098. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |