化工进展 ›› 2021, Vol. 40 ›› Issue (11): 6155-6172.DOI: 10.16085/j.issn.1000-6613.2020-2348
收稿日期:
2020-11-24
修回日期:
2020-12-13
出版日期:
2021-11-05
发布日期:
2021-11-19
通讯作者:
李文博
作者简介:
郭润楠(1991—),男,博士研究生,主要从事矿石预处理及分选工作。E-mail:基金资助:
GUO Runnan1,2(), LI Wenbo1,2(), HAN Yuexin1,2
Received:
2020-11-24
Revised:
2020-12-13
Online:
2021-11-05
Published:
2021-11-19
Contact:
LI Wenbo
摘要:
作为战略性非金属矿产资源,天然石墨独特的结构使得它具有导电性良好(电阻率8×10-6~13×10-6Ω·m)、可塑性强、摩擦系数小(0.08~0.16)、耐高温、化学性质稳定、天然可浮性好等物化特性,是多种工业必需的关键原料。同时天然石墨具有用途广泛、深加工产品附加值高、产业链条长等特点,除广泛应用于耐火材料、密封、铸造、导电材料等传统工业领域,在新能源、新一代电子信息技术、新能源汽车、高端装备制造业等新兴领域也有着极大的应用前景,被誉为“工业黑金”。我国石墨资源丰富,但尚未成为石墨资源强国,本文基于近年来我国石墨矿产资源开发现状、对外进出口贸易数据以及石墨消费市场结构,分析了天然石墨综合利用现状,并在此基础上对天然石墨分选工艺、提纯方法、深加工产品的制备及在新兴战略性产业领域的应用展开讨论,系统介绍了石墨资源的综合利用进展,其中主要涉及石墨层间化合物、球形石墨和石墨烯三类重要的石墨深加工产品。最后,基于石墨产业的发展趋势,给出加强石墨资源开发利用的发展方向。
中图分类号:
郭润楠, 李文博, 韩跃新. 天然石墨分选提纯及应用进展[J]. 化工进展, 2021, 40(11): 6155-6172.
GUO Runnan, LI Wenbo, HAN Yuexin. Progress on the separation, purification and application of natural graphite[J]. Chemical Industry and Engineering Progress, 2021, 40(11): 6155-6172.
国家和地区 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
---|---|---|---|---|---|---|
合计 | 110.77 | 109.87 | 109.61 | 86.84 | 103.95 | 116.23 |
巴西 | 8.70 | 7.51 | 8.50 | 8.50 | 9.50 | 9.60 |
加拿大 | 3.00 | 3.00 | 3.00 | 4.00 | 4.00 | 4.00 |
中国 | 78.00 | 78.00 | 78.00 | 62.50 | 63.00 | 70.00 |
印度 | 11.67 | 13.46 | 12.24 | 3.50 | 3.50 | 3.50 |
马达加斯加 | 0.53 | 0.81 | 0.92 | 1.33 | 4.81 | 4.81 |
墨西哥 | 0.92 | 0.65 | 0.38 | 0.17 | 0.42 | 0.42 |
莫桑比克 | — | — | — | — | 10.40 | 15.30 |
俄罗斯 | 1.76 | 1.59 | 1.94 | 2.52 | 1.78 | 1.66 |
斯里兰卡 | 0.40 | 0.42 | 0.40 | 0.35 | 0.40 | 0.40 |
乌克兰 | 1.38 | 1.45 | 1.46 | 1.49 | 1.50 | 1.50 |
津巴布韦 | 0.70 | 0.70 | 0.60 | 0.16 | 0.20 | 0.20 |
其他 | 3.71 | 2.28 | 2.16 | 2.29 | 4.44 | 4.84 |
表1 2014—2019年世界主要石墨生产地产量 (万吨)
国家和地区 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
---|---|---|---|---|---|---|
合计 | 110.77 | 109.87 | 109.61 | 86.84 | 103.95 | 116.23 |
巴西 | 8.70 | 7.51 | 8.50 | 8.50 | 9.50 | 9.60 |
加拿大 | 3.00 | 3.00 | 3.00 | 4.00 | 4.00 | 4.00 |
中国 | 78.00 | 78.00 | 78.00 | 62.50 | 63.00 | 70.00 |
印度 | 11.67 | 13.46 | 12.24 | 3.50 | 3.50 | 3.50 |
马达加斯加 | 0.53 | 0.81 | 0.92 | 1.33 | 4.81 | 4.81 |
墨西哥 | 0.92 | 0.65 | 0.38 | 0.17 | 0.42 | 0.42 |
莫桑比克 | — | — | — | — | 10.40 | 15.30 |
俄罗斯 | 1.76 | 1.59 | 1.94 | 2.52 | 1.78 | 1.66 |
斯里兰卡 | 0.40 | 0.42 | 0.40 | 0.35 | 0.40 | 0.40 |
乌克兰 | 1.38 | 1.45 | 1.46 | 1.49 | 1.50 | 1.50 |
津巴布韦 | 0.70 | 0.70 | 0.60 | 0.16 | 0.20 | 0.20 |
其他 | 3.71 | 2.28 | 2.16 | 2.29 | 4.44 | 4.84 |
制备方法 | 优点 | 缺点 |
---|---|---|
微机械剥离法 | 操作相对简单,可得到纯度高、结构完整、物化性能未被破坏的高质量产品,宜用于理论研究 | 产品尺寸较小、存在很大不确定性、对设备要求高、产量小、效率低、成本高、不宜大规模生产 |
外延生长法 | 控制温度可获得不同厚度的产品,所得石墨烯可以直接进行表征测试,适合理论研究 | 制备条件苛刻、成本高、产品厚度不均一、物化性质有破坏、不易从衬底分离、不宜大规模生产 |
CVD法 | 产量可观、产品尺寸较大、均匀性好、质量高、可控性好 | 设备要求高、工艺复杂、成本较高、石墨烯转移过程复杂、操作条件苛刻 |
氧化石墨-还原法 | 设备简单、产量高、成本较低、生产周期短、操作简单 | 产品结构有缺陷、物化性质有破坏、设备腐蚀严重、环境污染较大 |
表2 石墨烯4种制备方法对比
制备方法 | 优点 | 缺点 |
---|---|---|
微机械剥离法 | 操作相对简单,可得到纯度高、结构完整、物化性能未被破坏的高质量产品,宜用于理论研究 | 产品尺寸较小、存在很大不确定性、对设备要求高、产量小、效率低、成本高、不宜大规模生产 |
外延生长法 | 控制温度可获得不同厚度的产品,所得石墨烯可以直接进行表征测试,适合理论研究 | 制备条件苛刻、成本高、产品厚度不均一、物化性质有破坏、不易从衬底分离、不宜大规模生产 |
CVD法 | 产量可观、产品尺寸较大、均匀性好、质量高、可控性好 | 设备要求高、工艺复杂、成本较高、石墨烯转移过程复杂、操作条件苛刻 |
氧化石墨-还原法 | 设备简单、产量高、成本较低、生产周期短、操作简单 | 产品结构有缺陷、物化性质有破坏、设备腐蚀严重、环境污染较大 |
1 | 秦善, 王长秋. 矿物学基础[M]. 北京: 北京大学出版社, 2006: 44-45. |
QIN Shan, WANG Changqiu. Fundamentals of mineralogy[M]. Beijing: Peking University Press, 2006: 44-45. | |
2 | 刘磊, 牛敏, 郭珍旭, 等. 黑龙江某鳞片石墨层压粉碎-分质分选技术研究[J]. 非金属矿, 2019, 42(6): 57-61. |
LIU Lei, NIU Min, GUO Zhenxu, et al. Study on particle bed breakage-grading separation technology of flake graphite from Heilongjiang[J]. Non-Metallic Mines, 2019, 42(6): 57-61. | |
3 | 牛敏, 刘磊, 陈龙, 等. 层压粉碎-分质分选技术用于保护大鳞片石墨的研究[J]. 矿产保护与利用, 2018(4): 83-88. |
NIU Min, LIU Lei, CHEN Long, et al. Study on the protection of large scale graphite by particle bed breakage-grading separation technology[J]. Conservation and Utilization of Mineral Resources, 2018(4): 83-88. | |
4 | 刘玉海, 李海明. 碱酸法制备高纯石墨试验研究[J]. 矿产保护与利用, 2018(5): 73-78. |
LIU Yuhai, LI Haiming. Experimental study on the preparation of high purity graphite by alkali-acid method[J]. Conservation and Utilization of Mineral Resources, 2018(5): 73-78. | |
5 | 刘长青, 高秀. 酸碱法提纯隐晶质石墨的试验研究[J]. 煤炭技术, 2015, 34(9): 329-331. |
LIU Changqing, GAO Xiu. Experimental study on aphanitic graphite purification with acid and alkali method[J]. Coal Technology, 2015, 34(9): 329-331. | |
6 | 罗伯特·劳埃德, 马克斯韦尔·詹姆斯特纳. 连续减少和除去炭结构中所含矿物的化学处理方法:CN86101114[P]. 1986-08-13. |
LLOYD Robert, JAMESTURNER Maxwell. A chemical treatment method that continuously reduces and removes the minerals contained in the carbon structure: CN86101114[P]. 1986-08-13. | |
7 | 刘进卫, 卢都友, 严生, 等. 热活化对氢氟酸法制备高纯石墨的影响[J]. 炭素技术, 2013, 32(4): 47-51. |
LIU Jinwei, LU Duyou, YAN Sheng, et al. Influence of thermal activation on preparing high-purity graphite with hydrofluoric acid method[J]. Carbon Techniques, 2013, 32(4): 47-51. | |
8 | 王光民. 高纯石墨生产工艺探讨[J]. 非金属矿, 2001(4): 30-31. |
WANG Guangmin. Discussion on production process of high purity graphite[J]. Non-Metallic Mines, 2001(4): 30-31. | |
9 | 李继业, 姚绍德. 用氯化焙烧法生产高碳石墨的研究[J]. 中国矿业, 1996(3): 45-48. |
LI Jiye, YAO Shaode. Research on production of high-carbon graphite by chloridizing roast[J]. China Mining Magazine, 1996(3): 45-48. | |
10 | 夏云凯. 氯化焙烧法提纯天然鳞片石墨工艺研究[J]. 非金属矿, 1993(5): 21-24. |
XIA Yunkai. Study on purification process of natural flake graphite by chlorination roasting[J]. Non-Metallic Mines, 1993(5): 21-24. | |
11 | 张向军, 陈斌, 高欣明. 高温石墨化提纯晶质(鳞片)石墨[J]. 炭素技术, 2001(2): 39-40. |
ZHANG Xiangjun, CHEN Bin, GAO Xinming. Depuration of scaly graphites by high temperature graphitization[J]. Carbon Techniques, 2001(2): 39-40. | |
12 | 黑龙江鸡西市“高温法”提纯石墨研究取得新突破[J]. 中国粉体工业, 2015(3): 37-38. |
New breakthroughs have been made in the research of “high temperature method” purification of graphite[J]. China Powder Industry, 2015(3): 37-38. | |
13 | SCHAFHAEUTL C L. On the combinations of carbon with silicon and iron, and other metals, forming the different species of cast iron, steel, and malleable iron[J]. Philosophical Magazine, 1840, 16(106): 570-590. |
14 | 陈泽桁. 膨胀石墨——新兴的密封材料[J]. 河南科技, 1988(2): 13-14. |
CHEN Zeheng. Expanded graphite——emerging sealing material[J]. Henan Science and Technology, 1988(2): 13-14. | |
15 | CHUNG D D L. Exfoliation of graphite[J]. Journal of Materials Science, 1987, 22(12): 4190-4198. |
16 | 陈志刚, 张勇, 杨娟, 等. 膨胀石墨的制备、结构和应用[J]. 江苏大学学报(自然科学版), 2005(3): 248-252. |
CHEN Zhigang, ZHANG Yong, YANG Juan, et al. Preparations, structures and applications of exfoliated graphite[J]. Journal of Jiangsu University(Natural Science Edition), 2005(3): 248-252. | |
17 | 赵正平. 混酸系(HNO3/H3PO4)制备无硫可膨胀石墨[J]. 非金属矿, 2002(4): 26-28. |
ZHAO Zhengping. Preparation of sulfur-free expandable graphite by mixed acid system (HNO3/H3PO4)[J]. Non-Metallic Mines, 2002(4): 26-28. | |
18 | 刘国钦, 闫珉. 利用细鳞片石墨制备膨胀石墨的研究[J]. 新型炭材料, 2002(2): 13-18. |
LIU Guoqin, YAN Min. The preparation of expanded graphite using fine flaky graphite[J]. New Carbon Materials, 2002(2): 13-18. | |
19 | 王振廷, 殷力佳, 王洋. 无硫膨胀石墨的制备及微观组织分析[J]. 非金属矿, 2013, 36(5): 36-38. |
WANG Zhenting, YIN Lijia, WANG Yang. Studies on preparation and microstructure of sulfur-free expanded graphite[J]. Non-Metallic Mines, 2013, 36(5): 36-38. | |
20 | 王振廷, 付长璟. 石墨深加工技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 11-150. |
WANG Zhenting, FU Changjing. Graphite deep processing technology[M]. Harbin: Harbin Institute of Technology Press, 2017: 11-150. | |
21 | 刘海梅, 梁丽颖, 杨文胜. 超长单晶VO纳米线/石墨烯正极材料及制备方法: CN102208631A[P]. 2011-10-05. |
LIU Haimei, LIANG Liying, YANG Wensheng. Ultra-long single crystal VOnanowire/graphene cathode material and preparation method: CN102208631A[P]. 2011-10-05. | |
22 | LIU T, ZHANG R J, ZHANG X S, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. |
23 | LI J H, DA H F, LIU Q, et al. Preparation of sulfur-free expanded graphite with 320μm mesh of flake graphite[J]. Materials Letters, 2006, 60(29/30): 3927-3930. |
24 | YAO Y P. Preparation of sulfur-free expanded graphite and its influencing factors[J]. Lubrication Engineering, 2012, 37: 90-92. |
25 | CAO N, SHEN W, WEN S. The characterization of the porous structure of expanded graphite[J]. Acta Physico-Chimica Sinica, 1996, 12(8): 766-768. |
26 | FURDIN G. Exfoliation process and elaboration of new carbonaceous materials[J]. Fuel, 1998, 77(6): 479-485. |
27 | 付猛, 王荣飞, 赵晓兵, 等. 膨胀石墨的表面修饰及其对甲醛吸附性能研究[J]. 功能材料, 2009, 40(8): 1322-1325. |
FU Meng, WANG Rongfei, ZHAO Xiaobing, et al. Modification of expanded graphite and its adsorptive properties on formaldehyde gas[J]. Journal of Functional Materials, 2009, 40(8): 1322-1325. | |
28 | 张倩, 高欣宝, 韩其文. 膨胀石墨在聚合物基纳米复合材料中的应用[J]. 塑料工业, 2008, 36(S1): 192-194. |
ZHANG Qian, GAO Xinbao, HAN Qiwen. Application of expended graphite in polymer based nano-composite[J]. China Plastics Industry, 2008, 36(S1): 192-194. | |
29 | 苗艳, 苏永庆, 薛婷婷, 等. 膨胀石墨电极的研究和应用进展[J]. 炭素技术, 2012, 31(6): 48-51. |
MIAO Yan, SU Yongqing, XUE Tingting, et al. The research progress of expanded graphite electrode[J]. Carbon Techniques, 2012, 31(6): 48-51. | |
30 | 沈万慈, 曹乃珍, 李晓峰, 等. 多孔石墨吸附材料的生物医学应用研究[J]. 新型碳材料, 1998(1): 3-5. |
SHEN Wanci, CAO Naizhen, LI Xiaofeng, et al. Researches on the biomedical applications of porous graphite adsorption materials[J]. New Carbon Materials, 1998(1): 3-5. | |
31 | SHEN W C, WEN S Z, CAO N Z, et al. Expanded graphite: a new kind of biomedical material[J]. Carbon, 1999, 37: 356-358. |
32 | 杨媛媛, 薛微, 张云霞, 等. TiO2/膨胀石墨复合材料的制备及其对亚甲基兰的光催化降解[J]. 化工新型材料, 2007, 35(10): 1-3. |
YANG Yuanyuan, XUE Wei, ZHANG Yunxia, et al. Preparation of TiO2/exfoliated-graphite composite and photocatalytic degradation of methylene blue[J]. New Chemical Materials, 2007, 35(10): 1-3. | |
33 | 杜桂萍, 缪云坤, 张良, 等. 膨胀石墨对3mm波衰减性能研究[J]. 火工品, 2005(1): 13-16. |
DU Guiping, MIAO Yunkun, ZHANG Liang, et al. Study on attenuation performance of expansible graphite at 3mm wave[J]. Initiators & Pyrotechnics, 2005(1): 13-16. | |
34 | 关华, 潘功配, 姜力. 膨胀石墨对3mm & 8mm波衰减性能研究[J]. 红外与毫米波学报, 2004(1): 72-76. |
GUAN Hua, PAN Gongpei, JIANG Li. Study on attenuation performance of expanded graphite at the bands of 3mm and 8mm[J]. Journal of Infrared and Millimeter Waves, 2004(1): 72-76. | |
35 | 乔小晶, 张同来, 任慧, 等. 爆炸法制备膨胀石墨及其干扰性能[J]. 火炸药学报, 2003(1): 70-73. |
QIAO Xiaojing, ZHANG Tonglai, REN Hui, et al. Preparation by explosion method and the interference function of expanded graphite[J]. Chinese Journal of Explosives & Propellants, 2003(1): 70-73. | |
36 | 李春风, 罗新民, 候滨. 膨胀石墨的表面改性及作为润滑油添加剂的摩擦学性能[J]. 润滑与密封, 2007(7): 111-113, 121. |
LI Chunfeng, LUO Xinmin, HOU bin. Surface modification and tribological performance of expanded graphite (EG) as lubricating oil additives[J]. Lubrication Engineering, 2007(7): 111-113, 121. | |
37 | 王德钊, 张译尹, 钟德玮, 等. 可膨胀石墨的功能化改性及其在阻燃聚丙烯中的应用[J]. 功能材料, 2016, 47(9): 9166-9170. |
WANG Dezhao, ZHANG Yiyin, ZHONG Dewei, et al. The surface functionalization of expandable graphite and its application in flame retardant polypropylene[J]. Journal of Functional Materials, 2016, 47(9): 9166-9170. | |
38 | 杨荣, 乔红, 胡文田, 等. 反应型磷氮阻燃剂/可膨胀石墨复配阻燃聚氨酯泡沫[J]. 化工学报, 2016, 67(5): 2169-2175. |
YANG Rong, QIAO Hong, HU Wentian, et al. Synthesis, physical-mechanical properties and fire behaviors of polyurethane foam with reactive flame retardant and expandable graphite[J]. CIESC Journal, 2016, 67(5): 2169-2175. | |
39 | PARK S, RUOFF R S. Chemical methods for the production of graphenes[J]. Nature Nanotechnology, 2009, 4(4): 217-224. |
40 | RUH R P, DAVIS R A. Process for fluorinating aliphatic halohydrocarbons with a chromium fluoride catalyst and process for preparing the catalyst: US2745886A[P]. 1956-05-15. |
41 | 邹艳红. 氟化石墨合成新技术研究[D]. 长沙: 湖南大学, 2002. |
ZOU Yanhong. Research on new technology of synthesizing graphite fluoride[D]. Changsha: Hunan University, 2002. | |
42 | RÜDORFF W, RÜDORFF G. The catalytic influence of hydrofluoric acid on the formation of carbon monofluoride[J]. Chemische Berichte, 1947, 80: 413-417. |
43 | 苑金生. 氟化石墨的用途与制备方法[J]. 中国非金属矿工业导刊, 2007(4): 25-26, 33. |
YUAN Jinsheng. Application and preparation of graphite fluoride[J]. China Non-metallic Minerals Industry, 2007(4): 25-26, 33. | |
44 | ISAO I, TOYONOSUKE K, TOSHIO S. Process for the preparation of graphite fluoride: US3872032[P]. 1975-03-18. |
45 | FUJIMOTO H, TRESSAUD A. Long-term stability of fluorine-graphite intercalation compound prepared under high pressure of fluorine[J]. Carbon, 2015, 82: 176-183. |
46 | 李霞, 温丰源. 氟化石墨工艺技术研究[J]. 无机盐工业, 2014, 46(9): 52-55. |
LI Xia, WEN Fengyuan. Research on graphite fluoride technology[J]. Inorganic Chemicals Industry, 2014, 46(9): 52-55. | |
47 | SLINEY H E. Solid lubricant materials for high temperatures: a review[J]. Tribology International, 1982, 15(5): 303-315. |
48 | 夏金童, 陈小华, 征茂平, 等. 新型固体润滑剂——氟化石墨的制备与性能的研究[J]. 无机材料学报, 1998(3): 435-439. |
XIA Jintong, CHEN Xiaohua, ZHENG Maoping, et al. A new type of the solid lubricant material-preparation and properties of graphite fluoride[J]. Journal of Inorganic Materials, 1998(3): 435-439. | |
49 | 赵洋, 周永权, 王璞, 等. 氟化石墨在润滑方面的应用研究[J]. 机械管理开发, 2010, 25(5): 90-92. |
ZHAO Yang, ZHOU Yongquan, WANG Pu, et al. The application research of graphite fluoride in the field of lubrication[J]. Mechanical Management and Development, 2010, 25(5): 90-92. | |
50 | 聂明德, 薛群基. 氟化石墨润滑性能的研究[J]. 固体润滑, 1981(1): 28-35. |
NIE Mingde, XUE Qunji. Study on lubricating properties of graphite fluoride[J]. Tribology, 1981(1): 28-35. | |
51 | 朴正杰, 时杰, 吕宪俊. 氟化石墨的加工技术及其应用新进展[J]. 化工新型材料, 2017, 45(7): 27-29. |
PIAO Zhengjie, SHI Jie, Xianjun LYU. New advance on process technology and application of graphite fluoride[J]. New Chemical Materials, 2017, 45(7): 27-29. | |
52 | REDDY T B, LINDEN D. Handbook of batteries[M]. 4th ed. New York: McGraw-Hill Professional, 2011: 284-285. |
53 | ZHANG S S, FOSTER D, WOLFENSTINE J, et al. Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell[J]. Journal of Power Sources, 2009, 187: 233-237. |
54 | 张亮, 张红梅, 万伟华, 等. 氟化石墨材料的改性及其电化学性能研究[J]. 电化学, 2018, 24(4): 385-391. |
ZHANG Liang, ZHANG Hongmei, WAN Weihua, et al. Modifications and electrochemical properties of graphite fluoride[J]. Journal of Electrochemistry, 2018, 24(4): 385-391. | |
55 | ZHU Y L, ZHANG L J, ZHAO H H, et al. Significantly improved electrochemical performance of CFxpromoted by SiO2 modification for primary lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5(2): 796-803. |
56 | ZHANG S S, FOSTER D, READ J. Enhancement of discharge performance of Li/CFx cell by thermal treatment of CFxcathode material[J]. Journal of Power Sources, 2009, 188(2): 601-605. |
57 | MEDURI P, CHEN H H, CHEN X L, et al. Hybrid CFx-Ag2V4O11 as a high-energy, power density cathode for application in an underwater acoustic microtransmitter[J]. Electrochemistry Communications, 2011, 13(12): 1344-1348. |
58 | GAN H, RUBINO R S, TAKEUCHI E S. Dual-chemistry cathode system for high-rate pulse applications[J]. Journal of Power Sources, 2005, 146(1/2): 101-106. |
59 | CHEN K, MERRITT D R, HOWARD W G, et al. Hybrid cathode lithium batteries for implantable medical applications[J]. Journal of Power Sources, 2006, 162(2): 837-840. |
60 | LI Y, FENG W. The tunable electrochemical performances of carbon fluorides/manganese dioxide hybrid cathodes by their arrangements[J]. Journal of Power Sources, 2015, 274: 1292-1299. |
61 | 孟宪光. 氟化石墨及其合成[J]. 炭素, 1997(2): 29-33. |
MENG Xianguang. Graphite fluoride and its synthesis[J]. Carbon, 1997(2): 29-33. | |
62 | 于海迎, 吴红军, 杭磊, 等. 氟化石墨的合成及应用研究[J]. 化工时刊, 2006(1): 73-74, 77. |
YU Yinghai, WU Hongjun, HANG Lei, et al. Study of synthesis and application of fluorinated polymer graphite[J]. Chemical Industry Times, 2006(1): 73-74, 77. | |
63 | 屠仁举, 张冬梅, 王旭波, 等. Al/PMF(氟化石墨)复合粉末的制备与热性能[J]. 固体火箭技术, 2018, 41(3): 350-355. |
TU Renju, ZHANG Dongmei, WANG Xubo, et al. Preparation and thermal properties of Al/PMF composite powders[J]. Journal of Solid Rocket Technology, 2018, 41(3): 350-355. | |
64 | 何明, 盖国胜, 刘旋, 等. 制粉工艺对微晶石墨结构与电性能的影响[J]. 电池, 2002(4): 197-200. |
HE Ming, GAI Guosheng, LIU Xuan, et al. Effect of milling means on structure and electrochemical properties of natural graphite[J]. Battery Bimonthly, 2002(4): 197-200. | |
65 | 杨玉芬, 陈湘彪, 盖国胜, 等. 天然石墨球形化工艺研究[J]. 过程工程学报, 2004, 4(S1): 309-313. |
YANG Yufen, CHEN Xiangbiao, GAI Guosheng, et al. Research on spheroidization process of natural graphite[J]. The Chinese Journal of Process Engineering, 2004, 4(S1): 309-313. | |
66 | 邓成才, 张凌燕, 何保罗, 等. 湿法制备隐晶质球形石墨的研究[J]. 非金属矿, 2014, 37(2): 19-21. |
DENG Chengcai, ZHANG Lingyan, HE Baoluo, et al. Wet synthesis aphanitic spherical graphite research[J]. Non-Metallic Mines, 2014, 37(2): 19-21. | |
67 | 何鹏, 张国旺, 肖骁, 等. 天然石墨球形化设备应用现状与展望[J]. 中国非金属矿工业导刊, 2020(4): 6-9. |
HE Peng, ZHANG Guowang, XIAO Xiao, et al. Application and prospect of natural graphite spheroidization equipment[J]. China Non-Metallic Minerals Industry, 2020(4): 6-9. | |
68 | YOSHIO M, WANG H, FUKUDA K, et al. Effect of carbon coating on electrochemical performance of treated natural graphite as lithium-ion battery anode material[J]. Journal of the Electrochemical Society, 2000, 147(4): 1245-1250. |
69 | WANG H, YOSHIO M. Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery[J]. Journal of Power Sources, 2001, 93(1/2): 123-129. |
70 | WANG Guoping, ZHANG Bolan, YUE Min, et al. A modified graphite anode with high initial efficiency and excellent cycle life expectation[J]. Solid State Ionics, 2005, 176(9/10): 905-909. |
71 | ZHOU Y F, XIE S, CHEN C H. Pyrolytic polyurea encapsulated natural graphite as anode material for lithium ion batteries[J]. Electrochimica Acta, 2005, 50(24): 4728-4735. |
72 | 王茜, 柯昌美, 崔正威, 等. 沥青炭涂覆天然石墨用作锂离子电池负极材料的研究[J]. 炭素技术, 2014, 33(6): 5-9, 19. |
WANG Qian, KE Changmei, CUI Zhengwei, et al. Preparation on pitch-based carbon coated natural graphite as an anode material for lithium-ion batteries[J]. Carbon Techniques, 2014, 33(6): 5-9, 19. | |
73 | 何月德, 刘洪波, 石磊, 等. 改性球形微晶石墨用作锂离子电池负极材料的研究[J]. 湖南大学学报(自然科学版), 2009, 36(11): 44-46, 61. |
HE Yuede, LIU Hongbo, SHI Lei, et al. Study on modified spherical microcrystalline graphite as anode materials for Li-ion batteries[J]. Journal of Hunan University(Natural Sciences), 2009, 36(11): 44-46, 61. | |
74 | 张尚权. 流延法制备固体氧化物燃料电池关键材料研究[D]. 合肥: 中国科学技术大学, 2010. |
ZHANG Shangquan. Preparation key materials of solid oxide fuel cells by tape casting method[D]. Hefei: University of Science and Technology of China, 2010. | |
75 | 刘建国, 张军, 张红英. 国内某石墨精矿球形化试验研究[J]. 矿产保护与利用, 2019, 39(6): 28-31. |
LIU Jianguo, ZHANG Jun, ZHANG Hongying. Experimental study on spheroidization of a graphite flotation concentrate[J]. Conservation and Utilization of Mineral Resources, 2019, 39(6): 28-31. | |
76 | PEIERLS R E. Quelques propriétés typiques des corps solides[J]. Annales de l’institut Henri Poincaré, 1935, 5(3): 177-222. |
77 | LANDAU L D. Zur theorie der phasenumwandlungen Ⅱ[J]. Physikalische Zeitschrift der Sowjetunion, 1937, 11: 26-35. |
78 | GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183–191. |
79 | 袁建辉. 石墨烯中的电子及其输运性质的研究[D]. 武汉: 华中科技大学, 2012. |
YUAN Jianhui. The property of electron and electron transport in graphene[D]. Wuhan: Huazhong University of Science and Technology, 2012. | |
80 | LIU F, MING P, LI J. Ab initio calculation of ideal strength and phonon instability of graphene under tension[J]. Physical Review B, 2007, 76: 064120. |
81 | LEE C, WEI X, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
82 | MCALLISTER M J, LI J L, ADAMSON D H, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite[J]. Chemistry of Materials, 2007, 19(18): 4396-4404. |
83 | BALANDIN A A, GHOSH S, BAO W, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Ietters, 2008, 8(3): 902-907. |
84 | DU X, SKACHKO I, BARKER A, et al. Approaching ballistic transport in suspended graphene[J]. Nature Nanotechnology, 2008, 3(8): 491-495. |
85 | STAUBER T, PERES N M R, GEIM A K. Optical conductivity of graphene in the visible region of the spectrum[J]. Physical Review B, 2008, 78: 085432. |
86 | NOVOSELOV K S, JIANG Z, ZHANG Y, et al. Room-temperature quantum hall effect in graphene[J]. Science, 2007, 315(5817): 1379. |
87 | GAN T, HU S. Electrochemical sensors based on graphene materials[J]. Microchim Acta, 2011, 175(1/2): 1-19. |
88 | 沈贺, 张立明, 张智军. 石墨烯在生物医学领域的应用[J]. 东南大学学报(医学版), 2011, 30: 218-223. |
SHEN He, ZHANG Liming, ZHANG Zhijun. Application of graphene in biomedical field[J]. Journal of Southeast University(Medical Science Edition), 2011, 30: 218-223. | |
89 | DE Heer W A, BERGER C, WU X, et al. Epitaxial graphene[J]. Solid State Communications, 2007, 143(1/2): 92-100. |
90 | WANG J, ZHU M, OUTLAW R A, et al. Synthesis of carbon nanosheets by inductively coupled radio-frequency plasma enhanced chemical vapor deposition[J]. Carbon, 2004, 42(14): 2867-2872. |
91 | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
92 | 付长璟, 王振廷. 石墨烯的制备、结构及应用[M]. 哈尔滨: 哈尔滨工业大学出版社, 2017: 25-200. |
FU Changjing, WANG Zhenting. Preparation, structure and application of graphene[M]. Harbin: Harbin Institute of Technology Press, 2017: 25-200. | |
93 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
94 | ZHANG Y B, SMALL J P, PONTIUS W V, et al. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Applied Physics Letters, 2005, 86(7): 073104-1-073104-3. |
95 | MAYOROV A S, ELIAS D C, MUKHIN I S, et al. How close can one approach the dirac point in graphene experimentally?[J]. Nano Letters, 2012, 12(9): 4629-4634. |
96 | BERGER C, SONG Z, LI T, et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics[J]. The Journal of Physical Chemistry B, 2004, 108(52): 19912-19916. |
97 | WU P, JIANG H, ZHANG W, et al. Lattice mismatch induced nonlinear growth of graphene[J]. Journal of the American Chemical Society, 2012, 134(13): 6045-6051. |
98 | OLLE M, CEBALLOS G, SERRATE D, et al. Yield and shape selection of graphene nanoislands grown on Ni(111)[J]. Nano Letters, 2012, 12(9): 4431-4436. |
99 | REINA A, JIA X, HO J, et al. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition[J]. Nano Letters, 2009, 9(1): 30-35. |
100 | LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils[J]. Science, 2009, 324(5932): 1312-1314. |
101 | BABICHEV A V, RYKOV S A, TCHERNYCHEVA M, et al. Influence of substrate microstructure on the transport properties of CVD-graphene[J]. ACS Applied Materials & Interfaces, 2015, 8(1): 240-246. |
102 | HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80(6): 1339. |
103 | BRODIE B C. On the atomic weight of graphite[J]. Philosophical Transactions of the Royal Society of London, 1859, 149: 249-259. |
104 | STAUDENMAIER L. Verfahren zur darstellung der graphitsäure[J]. Berichte Der Deutschen Chemischen Gesellschaft, 1898, 31(2): 1481-1487. |
105 | 石文荣, 邹鹏, 杨书华, 等. 一种石墨烯制备方法[J]. 兵器材料科学与工程, 2013, 36(6): 101-103. |
SHI Wenrong, ZOU Peng, YANG Shuhua, et al. A preparation method of graphene[J]. Ordnance Material Science and Engineering, 2013, 36(6): 101-103. | |
106 | MEI X, MENG X, WU F. Hydrothermal method for the production of reduced graphene oxide[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 68: 81-86. |
107 | ZHANG B, LIU T, MENG B, et al. Broadband high photoresponse from pure monolayer graphene photodetector[J]. Nature Communications, 2013, 4: 1811. |
108 | SCHEDIN F, GEIM A K, MOROZOV S V, et al. Detection of individual gas molecules adsorbed on graphene[J]. Nature Materials, 2007, 6(9): 652-655. |
109 | LEE H, CHOI T K, LEE Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy[J]. Nature Nanotechnology, 2016, 11(6): 566-572. |
110 | KIM Y, CRUZ S S, LEE K, et al. Remote epitaxy through graphene enables two-dimensional material-based layer transfer[J]. Nature, 2017, 544(7650): 340-343. |
111 | MARY. 科学家开发出石墨烯-硅光电混合芯片, 为超快芯片等应用开启大门[J]. 今日电子, 2012(8): 29. |
MARY. Scientists have developed graphene-silicon optoelectronic hybrid chips, opening the door to applications such as ultrafast chips[J]. Electronic Products, 2012(8): 29. | |
112 | LIN Y M, DIMITRAKOPOULOS C, JENKINS K A, et al. 100GHz transistors from wafer-scale epitaxial graphene[J]. Science, 2010, 327(5966): 662. |
113 | BAE S, KIM H, LEE Y, et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes[J]. Nature Nanotechnology, 2010, 5(8): 574-578. |
114 | LEE W H, SUK J W, LEE J, et al. Simultaneous transfer and doping of CVD-grown graphene by fluoropolymer for transparent conductive films on plastic[J]. ACS Nano, 2012, 6(2): 1284-1290. |
115 | SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854. |
116 | STOLLER M D, PARK S, ZHU Y, et al. Graphene-based ultracapacitors[J]. Nano Letters, 2008, 8(10): 3498-3502. |
117 | RUSSIER J, LEÓN V, ORECCHIONI M, et al. Few-layer graphene kills selectively tumor cells from myelomonocytic leukemia patients[J]. Angewandte Chemie International Edition, 2017, 56(11): 3014-3019. |
118 | AKHAVAN O, GHADERI E. Toxicity of graphene and graphene oxide nanowalls against bacteria[J]. ACS Nano, 2010, 4(10): 5731-5736. |
119 | KIDAMBI P R, JANG D, IDROBO J C, et al. Nanoporous atomically thin graphene membranes for desalting and dialysis applications[J]. Advanced Materials, 2017, 29(33): 1700277.1-1700277.8. |
120 | MU Yongbiao, HAN Meisheng, LI Jiayang, et al. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries[J]. Carbon, 2021, 173: 477-484. |
121 | MO Runwei, LI Fan, TAN Xinyi, et al. High-quality mesoporous graphene particles as high-energy and fast-charging anodes for lithium-ion batteries[J]. Nature Communications, 2019, 10(1): 1474-1483. |
122 | LIANG Junfei, XU Yuqi, SUN Hongtao, et al. Vacuum-dried 3D holey graphene frameworks enabling high mass loading and fast charge transfer for advanced batteries[J]. Energy Technology, 2020, 8(3):1901002. |
123 | SON I H, PARK J H, PARK S, et al. Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities[J]. Nature Communications, 2017, 8(1): 1561. |
124 | DU Y, LI N, ZHANG T L, et al. Reduced graphene oxide coating with anticorrosion and electrochemical property-enhancing effects applied in hydrogen storage system[J]. ACS Applied Materials & Interfaces, 2017, 9(34): 28980-28989. |
125 | 牟铭, 顾宝珊, 王仕东, 等. 石墨烯及其复合材料在水处理中的研究进展[J]. 化工新型材料, 2019, 47(12): 16-21. |
MU Ming, GU Baoshan, WANG Shidong, et al. Progress of graphene and its composite in water treatment[J]. New Chemical Materials, 2019, 47(12): 16-21. | |
126 | LEM Q C, CAO X T, LEE W K, et al. Fabrication and adsorption properties of novel magnetic graphene oxide composites for removal of methylene blue[J]. Molecular Crystals and Liquid Crystals, 2017, 644(1): 160-167. |
127 | ZHAO J, DENG B, LYU M, et al. Graphene oxide-based antibacterial cotton fabrics[J]. Advanced Healthcare Materials, 2013, 2(9): 1259-1266. |
128 | CHOI D, CHOI M Y, CHOI W M, et al. Fully rollable transparent nanogenerators based on graphene electrodes[J]. Advanced Materials, 2010, 22(19): 2187-2192. |
129 | YOUSEFI R, AZIMI H R, MAHMOUDIAN M R, et al. The effect of defect emissions on enhancement photocatalytic performance of ZnSe QDs and ZnSe/rGO nanocomposites[J]. Applied Surface Science, 2018, 435: 886-893. |
[1] | 张琳, 方建军, 赵敏捷, 李国栋. 隐晶质石墨提纯研究进展[J]. 化工进展, 2017, 36(01): 261-267. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |