化工进展 ›› 2019, Vol. 38 ›› Issue (01): 649-663.DOI: 10.16085/j.issn.1000-6613.2018-1137
王君妍1,2(),白云1,2,马国强1,2,隋红1,2,3,李鑫钢1,2,3(),何林1,2()
收稿日期:
2018-05-31
修回日期:
2018-09-17
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
李鑫钢,何林
作者简介:
王君妍(1992—),女,博士研究生,研究方向为非常规石油分离。E-mail:<email>wangjunyan@tju.edu.cn</email>。|李鑫钢,教授,研究方向为精馏分离、非常规石油分离过程、挥发性有机污染资源化、有机污染土壤修复。E-mail:<email>lxg@tju.edu.cn</email>|何林,助理教授,研究方向为非常规石油分离过程、挥发性有机污染资源化、有机污染土壤修复。E-mail:<email>linhe@tju.edu.cn</email>
基金资助:
Junyan WANG1,2(),Yun BAI1,2,Guoqiang MA1,2,Hong SUI1,2,3,Xingang LI1,2,3(),Lin HE1,2()
Received:
2018-05-31
Revised:
2018-09-17
Online:
2019-01-05
Published:
2019-01-05
Contact:
Xingang LI,Lin HE
摘要:
针对异位非常规石油及油泥等重质油固体系分离与资源化利用问题,本文系统介绍了非常规石油资源与油泥的共性分离基础问题,并对几种主要的资源化利用方法进行了综述与展望。重质油固体系在结构上主要由油、矿物和水组成,但其性质则由矿物质理化性质、油组分性质、水分、添加剂(絮凝剂)所决定,从而直接影响油固分离方法的选择及分离效果。基于此,本文从工程化角度出发,重点总结了水洗法、溶剂萃取法和热解法三类重质油-固体系分离工艺研究现状,分别从各工艺基本工作原理、传统工艺流程、新型工艺研究以及发展方向展望4个方面进行了重点讨论。虽然这三类方法的工艺研究相对成熟,但在实际操作过程中,各自仍存在不同的挑战,有待进一步的探索,比如条件及设备优化、添加剂筛选及优化或原料体系改性、能量综合利用等。此外,除了技术本身以外,还需根据工程现场条件、分离经济性等方面对资源化化工艺进行全面分析与优化,确定适用范围,最终实现处理成本的降低。
中图分类号:
王君妍, 白云, 马国强, 隋红, 李鑫钢, 何林. 重质油-固体系分离与资源化回收研究进展[J]. 化工进展, 2019, 38(01): 649-663.
Junyan WANG, Yun BAI, Guoqiang MA, Hong SUI, Xingang LI, Lin HE. Recent advances in separation and recovery of oil from heavy oil-solid systems[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 649-663.
理论 | 公式 | 应用领域 |
---|---|---|
分布活化能(DAEM)法 | | 煤的热解与燃烧领域,适用复杂体系 |
Flynn-Wall-Ozawa (FWO)法 | | 生物质与煤炭热解过程 |
Coats-Redfern (C-R)法 | | 生物质与煤单独热解和共热解过程 |
表1 重质油热解动力学模型主理论[105]
理论 | 公式 | 应用领域 |
---|---|---|
分布活化能(DAEM)法 | | 煤的热解与燃烧领域,适用复杂体系 |
Flynn-Wall-Ozawa (FWO)法 | | 生物质与煤炭热解过程 |
Coats-Redfern (C-R)法 | | 生物质与煤单独热解和共热解过程 |
工艺 | 优势 | 限制 | 参考文献 |
---|---|---|---|
常压干馏技术 | 工艺操作及设备要求简单、流程简单、能耗低、易于工业应用 | 停留时间过长、易发生过度裂解、不凝气产量高、油收率低 | [ |
氮气吹扫热解 | 避免过度裂解 | 加热能耗高、分离难度高、工艺的复杂 | [ |
加氢热解 | 油收率和品质高 | 催化剂易于结焦失活、成本高 | [ |
减压热解 | 气相产物分压低、停留时间短、油收率高、固体结焦率低、传质传热效率高 | 装置的密封性及耐高温性能要求高、装置成本高 | [ |
表2 常用热解技术比较
工艺 | 优势 | 限制 | 参考文献 |
---|---|---|---|
常压干馏技术 | 工艺操作及设备要求简单、流程简单、能耗低、易于工业应用 | 停留时间过长、易发生过度裂解、不凝气产量高、油收率低 | [ |
氮气吹扫热解 | 避免过度裂解 | 加热能耗高、分离难度高、工艺的复杂 | [ |
加氢热解 | 油收率和品质高 | 催化剂易于结焦失活、成本高 | [ |
减压热解 | 气相产物分压低、停留时间短、油收率高、固体结焦率低、传质传热效率高 | 装置的密封性及耐高温性能要求高、装置成本高 | [ |
设备 | 优势 | 限制 | 参考文献 |
---|---|---|---|
固定床热解设备 | 结构简单、操作便捷、易于调整压力及载气 | 传质传热效果差、热利用率低、 难以连续操作 | [ |
旋转干馏炉 | 操作简单、收率高、传热效率高,易于加热 | 装置较为复杂 | [ |
流化床干馏炉 | 传质传热效果好、重质油收率高 | 装置成本高、不易维护 | [ |
ATP装置 | 能量利用率高、油收率高、自动化程度高 | 设备复杂、维修成本高 | [ |
表3 热解设备对比
设备 | 优势 | 限制 | 参考文献 |
---|---|---|---|
固定床热解设备 | 结构简单、操作便捷、易于调整压力及载气 | 传质传热效果差、热利用率低、 难以连续操作 | [ |
旋转干馏炉 | 操作简单、收率高、传热效率高,易于加热 | 装置较为复杂 | [ |
流化床干馏炉 | 传质传热效果好、重质油收率高 | 装置成本高、不易维护 | [ |
ATP装置 | 能量利用率高、油收率高、自动化程度高 | 设备复杂、维修成本高 | [ |
方法 | 油收率/% | 费用/CNY·m-3 | 前处理 | 后处理 | 副产物 | 优势 | 限制 | 参考文献 |
---|---|---|---|---|---|---|---|---|
水洗法 | 50~80 | 300~1000 | — | 泡沫分离 | 尾矿废水 | 设备操作简单, 成本低 | 分离效率较低, 耗水量大,后处理困难 | [ |
溶剂萃取法 | 60~95 | 700~2000 | 脱水 | 溶剂分离 | VOCs 含溶剂尾矿 | 工艺流程简单, 油收率及分离效率高 | 溶剂用量大,成本高, 易致二次污染 | [ |
热解法 | 40~90 | 700~2000 | 脱水 | — | VOCs 焦炭 | 分离效率高, 产品油易于精制 | 能耗大, 设备及操作费用高 | [ |
表4 重质油-固体系资源化方法比较
方法 | 油收率/% | 费用/CNY·m-3 | 前处理 | 后处理 | 副产物 | 优势 | 限制 | 参考文献 |
---|---|---|---|---|---|---|---|---|
水洗法 | 50~80 | 300~1000 | — | 泡沫分离 | 尾矿废水 | 设备操作简单, 成本低 | 分离效率较低, 耗水量大,后处理困难 | [ |
溶剂萃取法 | 60~95 | 700~2000 | 脱水 | 溶剂分离 | VOCs 含溶剂尾矿 | 工艺流程简单, 油收率及分离效率高 | 溶剂用量大,成本高, 易致二次污染 | [ |
热解法 | 40~90 | 700~2000 | 脱水 | — | VOCs 焦炭 | 分离效率高, 产品油易于精制 | 能耗大, 设备及操作费用高 | [ |
1 | SANTOS R , LOH W , BANNWART A , et al . An overview of heavy oil properties and its recovery and transportation methods[J]. Brazilian Journal of Chemical Engineering, 2014, 31(3): 571-590. |
2 | MEYER R F , ATTANASI E D , FREEMAN P A . Heavy oil and natural bitumen resources in geological basins of the world[R]. US Geological Survey, 2007. |
3 | 柳蓉, 刘招君 . 国内外油页岩资源现状及综合开发潜力分析[J]. 吉林大学学报(地球科学版), 2006, 36(6): 892-898. |
LIU Rong , LIU Zhaojun . Oil shale resource situation and multi-purpose development potential in China and abroad[J]. Journal of Jilin University(Earth Science Edition), 2006, 36(6): 892-898. | |
4 | 薛成, 冯乔, 田华 . 中国油砂资源分布及勘探开发前景[J]. 新疆石油地质, 2011, 32(4): 348-350. |
XUE Cheng , FENG Qiao , TIAN Hua . Distribution and prospect of oil sand resources in China[J]. Xinjiang Petroleum Geology, 2011, 32(4): 348-350. | |
5 | 罗茂, 耿安松, 廖泽文 . 油砂中沥青的热碱水萃取分离及其影响因素[J]. 油气地质与采收率, 2011(3): 94-97. |
LUO Mao , GENG Ansong , LIAO Zewen . Separation of hot water-based extraction for oil sand bitumen and its affecting parameter[J]. Petroleum Geology and Recovery Efficiency, 2011(3): 94-97. | |
6 | 赵晓非, 葛丹, 张晓阳 . 超声波-破乳联用技术处理大庆落地油泥[J]. 化工进展, 2017, 36(s1): 489-494. |
ZHAO Xiaofei , GE Dan , ZHANG Xiaoyang . Treatment of oily sludge in Daqing by ultrasonic-demulsification hyphenated technique[J]. Chemical Industry and Engineering Progress, 2017, 36(s1): 489-494. | |
7 | 张坚强, 李鑫钢, 隋红 . 离子液体促进溶剂萃取油砂沥青[J]. 化工进展, 2014, 33(8): 1986-1991. |
ZHANG Jianqiang , LI Xingang , SUI Hong . Solvent extraction of bitumen from oil sands amended with ionic liquid[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 1986-1991. | |
8 | LI X , YANG Z , SUI H , et al . A hybrid process for oil-solid separation by a novel multifunctional switchable solvent[J]. Fuel, 2018, 221: 303-310. |
9 | MA X, RIDNER D , ZHANG Z , et al . Study on vacuum pyrolysis of oil sands by comparison with retorting and nitrogen sweeping pyrolysis[J]. Fuel Processing Technology, 2017, 163: 51-59. |
10 | 杨兆中, 朱静怡, 李小刚, 等 . 微波加热技术在非常规油资源中的研究现状与展望[J]. 化工进展, 2016, 35(11): 3478-3483. |
YANG Zhaozhong , ZHU Jingyi , LI Xiaogang , et al . Progress in researches on microwave heating in unconventional oil resources[J]. Chemical Industry and Engineering Progress, 2016, 35(11): 3478-3483. | |
11 | 马锋, 张光亚, 王红军, 等 . 全球重油与油砂资源潜力, 分布与勘探方向[J]. 吉林大学学报(地球科学版), 2015(4): 1042-1051. |
Feng MA , ZHANG Guangya , WANG Hongjun , et al . Potential, distribution and exploration trend of global heavy oil and oil sand resources[J]. Journal of Jilin University(Earth Science Edition), 2015(4): 1042-1051. | |
12 | 张雷, 梁玉艳, 王志勇, 等 . 油田含油污泥物性分析[J]. 环境科学与管理, 2011, 36(12): 124-127. |
ZHANG Lei , LIANG Yuyan , WANG Zhiyong , et al . Properties of oily sludge in oilfield[J]. Environmental Science and Management, 2011, 36(12): 124-127. | |
13 | 赵晓非, 张晓阳, 刘立新, 等 . 新型油泥处理技术展望[J]. 化工进展, 2016, 35(s1): 276-280. |
ZHAO Xiaofei , ZHANG Xiaoyang , LIU Lixin , et al . Prospect of new treatment of oil sludge[J]. Chemical Industry and Engineering Progress, 2016, 35(s1): 276-280. | |
14 | 王玉华, 陈传帅, 孟娟, 等 . 含油污泥处置技术的新发展及其应用现状[J]. 安全与环境工程, 2018, 25(3): 103-110. |
WANG Yuhua , CHEN Chuanshuai , MENG Juan , et al . Development and application of disposal techniques on oil sludge[J]. Safety and Environmental Engineering, 2018, 25(3): 103-110. | |
15 | DA SILVA L J , ALVES F C , DE FRANçA F P . A review of the technological solutions for the treatment of oily sludges from petroleum refineries[J]. Waste Management & Research, 2012, 30(10): 1016-1030. |
16 | HAHN W J . High-temperature reprocessing of petroleum oily sludges[J]. SPE Production & Facilities, 1994, 9(3): 179-182. |
17 | CHENG S , CHANG F , ZHANG F , et al . Progress in thermal analysis studies on the pyrolysis process of oil sludge[J]. Thermochimica Acta, 2018, 663: 125-136. |
18 | CLOUTIS E A , GAFFEY M J , MOSLOW T F . Characterization of minerals in oil sands by reflectance spectroscopy[J]. Fuel, 1995, 74(6): 874-879. |
19 | MOHAN S V , CHANDRASEKHAR K . Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation[J]. Bioresource Technology, 2011, 102(20): 9532-9541. |
20 | WALTERS E J . Review of the world’s major oil sand deposits[M]. CSPG Special Publications, 1974. |
21 | POWERS S E , ANCKNER W H , SEACORD T F . Wettability of NAPL-contaminated sands[J]. Journal of Environmental Engineering, 1996, 122(10): 889-896. |
22 | LIN F , HE L , PRIMKULOV B , et al . Dewetting dynamics of a solid microsphere by emulsion drops[J]. The Journal of Physical Chemistry C, 2014, 118(25): 13552-13562. |
23 | 赵瑞玉, 王通, 张超, 等 . 油砂润湿性研究进展[J]. 油田化学, 2014(4): 620-625. |
ZHAO Ruiyu , WANG Tong , ZHAG Chao, et al . Research progress of oil sands wettability[J]. Oilfield Chemistry, 2014(4): 620-625. | |
24 | REN S , ZHAO H , LONG J , et al . Understanding weathering of oil sands ores by atomic force microscopy[J]. AIChE Journal, 2009, 55(12): 3277-3285. |
25 | RAMIASA M , RALSTON J , FETZER R , et al . The influence of topography on dynamic wetting[J]. Advances in Colloid and Interface science, 2014, 206(2): 275-293. |
26 | WOLANSKY G , MARMUR A . Apparent contact angles on rough surfaces: the Wenzel equation revisited[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156(1/2/3): 381-388. |
27 | DAI Q , CHUNG K H . Bitumen-sand interaction in oil sand processing[J]. Fuel, 1995, 74(12): 1858-1864. |
28 | HE L , LIN F , LI X , et al . Interfacial sciences in unconventional petroleum production: from fundamentals to applications[J]. Chemical Society Reviews, 2015, 44(15): 5446-5494. |
29 | SPEIGHT J G . The chemistry and technology of petroleum[M]. CRC Press, 2014. |
30 | WOODS J , KUNG J , KINGSTON D , et al . Canadian crudes: a comparative study of SARA fractions from a modified HPLC separation technique[J]. Oil & Gas Science and Technology—Rev. FP, 2008, 63(1): 151-163. |
31 | TONG W , CHAO Z , ZHAO R , et al . Solvent eraction of bitumen from oil sands[J]. Chemical Industry & Engineering Progress, 2014, 28(4): 2297-2304. |
32 | SUI H , MA G, HE L , et al . Recovery of heavy hydrocarbons from Indonesia carbonate asphalt rocks I: Solvent extraction, particle sedimentation, and solvent recycling[J]. Energy & Fuels, 2016, 30(11): 9242-9249. |
33 | TAKAMURA K . Microscopic structure of Athabasca oil sand[J]. The Canadian Journal of Chemical Engineering, 1982, 60(4): 538-545. |
34 | SLOBOD R , CHAMBERS A , PREHN JR W . Use of centrifuge for determining connate water, residual oil, and capillary pressure curves of small core samples[J]. Journal of Petroleum Technology, 1951, 3(4): 127-134. |
35 | REIS J . An overview of the environmental issues facing the upstream petroleum industry[C]// SPE Annual Technical Conference and Exhibition, 1993. |
36 | HU G , LI J , ZENG G . Recent development in the treatment of oily sludge from petroleum industry: a review[J]. Journal of Hazardous Materials, 2013, 261: 470-490. |
37 | CLARK K , PASTERNACK D . Hot water seperation of bitumen from Alberta bituminous sand[J]. Industrial & Engineering Chemistry, 1932, 24(12): 1410-1416. |
38 | MEADUS F W , CHEVRIER P J , SPARKS B D . Solvent extraction of athabasca oil-sand in a rotating mill. Part 1. Dissolution of bitumen[J]. Fuel Processing Technology, 1982, 6(3): 277-287. |
39 | HE L , LI X G , DU Y L , et al . Parameters of solvent extraction for bitumen recovery from oil Sands[J]. Advanced Materials Research, 2012, 347-353: 3728-3731. |
40 | PAKDEL H , ROY C . Recovery of bitumen by vacuum pyrolysis of Alberta tar sands[J]. Energy & fuels, 2003, 17(5): 1145-1152. |
41 | MENG M , HU H , ZHANG Q , et al . Pyrolysis behaviors of Tumuji oil sand by thermogravimetry (TG) and in a fixed bed reactor[J]. Energy & Fuels, 2007, 21(4): 2245-2249. |
42 | GAO S , MORAN K , XU Z , et al . Role of naphthenic acids in stabilizing water-in-diluted model oil emulsions[J]. The Journal of Physical Chemistry B, 2010, 114(23): 7710-7718. |
43 | CHEVALIER Y , BOLZINGER MA . Emulsions stabilized with solid nanoparticles: pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439(2): 23-34. |
44 | AL-SAHHAF T A , FAHIM M A , ELSHARKAWY A M . Effect of inorganic solids, wax to asphaltene ratio, and water cut on the stability of water-in-crude oil emulsions[J]. Journal of Dispersion Science and Technology, 2009, 30(5): 597-604. |
45 | SULLIVAN A P , KILPATRICK P K . The effects of inorganic solid particles on water and crude oil emulsion stability[J]. Industrial & Engineering Chemistry Research, 2002, 41(14): 3389-3404. |
46 | MARTíNEZ-PALOU R , CERóN-CAMACHO R , CHáVEZ B , et al . Demulsification of heavy crude oil-in-water emulsions: a comparative study between microwave and thermal heating[J]. Fuel, 2013, 113(2): 407-414. |
47 | MASLIYAH J , ZHOU Z J , XU Z , et al . Understanding water‐based bitumen extraction from Athabasca oil sands[J]. The Canadian Journal of Chemical Engineering, 2004, 82(4): 628-654. |
48 | 张小庆, 王枫, 匡民明, 等 . 超声波辅助破乳法回收石化罐底油泥中的原油[J]. 化工环保, 2015, 35(4): 399-403. |
ZHANG Xiaoqing , WANG Feng , KUANG Minming , et al . Recovery of oil from tank bottom oily sludge in pertochemical plant by ultrasound-assisted demulsification process[J]. Environmental Protection of Chemical Industry, 2015, 35(4): 399-403. | |
49 | XU N , WANG W , HAN P , et al . Effects of ultrasound on oily sludge deoiling[J]. Journal of Hazardous Materials, 2009, 171(1/2/3): 914-917. |
50 | SUSLICK K S , CHOE S B , CICHOWLAS A A , et al . Sonochemical synthesis of amorphous iron[J]. Nature, 1991, 353(6343): 414-416. |
51 | 林伟帮, 陈英, 陈东, 等 . 利用海水处理落地油泥的研究[J]. 广东化工, 2013, 40(20): 121-123. |
LIN Weibang , CHEN Ying , CHEN Dong , et al . Study on processing oily sludge utilization of seawater[J]. Guangdong Chemical Industry, 2013, 40(20): 121-123. | |
52 | HE L , LIN F , LI X , et al . Enhancing bitumen liberation by controlling the interfacial tension and viscosity ratio through solvent addition[J]. Energy & Fuels, 2014, 28(12): 7403-7410. |
53 | 张东生, 陈爽, 刘涛, 等 . 含油污泥微乳化处理工艺研究[J]. 环境工程, 2013, 31(5): 99-103. |
ZHANG Dongdsheng , CHEN Shuang , LIU Tao , et al . Investigation on technology of oily sludge treatment through microemulsification[J]. Environmental Engineering, 2013, 31(5):99-103. | |
54 | 蒲跃琪, 于超, 李志良, 等 . 鼠李糖脂强化热化学洗涤落地油泥研究[J]. 浙江海洋学院学报(自然科学版), 2014, 33(6):572-575. |
PU Yueqi , YU Chao , LI Zhiliang , et al . Study of thermo chemical washing for oily sludge with Rhamnolipid[J]. Journal of Zhejiang Ocean University(Natural Science), 2014, 33(6):572-575. | |
55 | MOHEBBIFAR M , GHAZANFARI M H , VOSSOUGHI M . Experimental investigation of nano-biomaterial applications for heavy oil recovery in shaly porous models: A pore-level study[J]. Journal of Energy Resources Technology, 2015, 137(1): 014501-1-014501-8. |
56 | MAGHZI A , MOHAMMADI S , GHAZANFARI M H , et al . Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: a pore-level investigation[J]. Experimental Thermal and Fluid Science, 2012, 40(7): 168-176. |
57 | KAZEMZADEH Y , ESHRAGHI S E , KAZEMI K , et al . Behavior of asphaltene adsorption onto the metal oxide nanoparticle surface and its effect on heavy oil recovery[J]. Industrial & Engineering Chemistry Research, 2015, 54(1): 233-239. |
58 | ROUSTAEI A , BAGHERZADEH H . Experimental investigation of SiO2 nanoparticles on enhanced oil recovery of carbonate reservoirs[J]. Journal of Petroleum Exploration and Production Technology, 2015, 5(1): 27-33. |
59 | TORSATER O , ENGESET B , HENDRANINGRAT L , et al . Improved oil recovery by nanofluids flooding: an experimental study[C]//SPE Kuwait International Petroleum Conference and Exhibition, 2012. |
60 | HENDRANINGRAT L , LI S , TORSÆTER O . A coreflood investigation of nanofluid enhanced oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 111(21): 128-138. |
61 | DANIELSSON I , LINDMAN B . The definition of microemulsion[J]. Colloids and Surfaces, 1981, 3(4): 391-392. |
62 | WASAN D T , NIKOLOV A D . Spreading of nanofluids on solids[J]. Nature, 2003, 423(6936): 156-159. |
63 | LI Y , DAI C , ZHOU H , et al . Investigation of spontaneous imbibition by using a surfactant-free active silica water-based nanofluid for enhanced oil recovery[J]. Energy & Fuels, 2017, 32(1): 287-293. |
64 | ZHANG Z , LI H , SUI H , et al . Synthesis and application of hydrophilically-modified Fe3O4 nanoparticles in oil sands separation[J]. RSC Advances, 2018, 8(28): 15813-15824. |
65 | TAREK M . Investigating nano-fluid mixture effects to enhance oil recovery[C]//SPE Annual Technical Conference and Exhibition, 2015. |
66 | ALOMAIR O A , MATAR K M , ALSAEED Y H . Nanofluids application for heavy oil recovery[C]//SPE Asia Pacific Oil & Gas Conference and Exhibition, 2014. |
67 | SUN X , ZHANG Y , CHEN G , et al . Application of nanoparticles in enhanced oil recovery: a critical review of recent progress[J]. Energies, 2017, 10(3): 345-1-33. |
68 | LIU Y , JESSOP P G , CUNNINGHAM M , et al . Switchable surfactants[J]. Science, 2006, 313(5789): 958-960. |
69 | LIN F , STOYANOV S R , XU Y . Recent advances in nonaqueous extraction of bitumen from mineable oil sands: a review[J]. Organic Process Research & Development, 2017, 21(4): 492-510. |
70 | NIKAKHTARI H , VAGI L , CHOI P , et al . Solvent screening for non-aqueous extraction of Alberta oil sands[J]. Canadian Journal of Chemical Engineering, 2013, 91(6): 1153-1160. |
71 | PARANHOS GAZINEU M H , DE ARAúJO A A , BRANDãO Y B , et al . Radioactivity concentration in liquid and solid phases of scale and sludge generated in the petroleum industry[J]. Journal of Environmental Radioactivity, 2005, 81(1): 47-54. |
72 | HILDEBRAND J H . A critique of the theory of solubility of non-electrolytes[J]. Chemical reviews, 1949, 44(1): 37-45. |
73 | PAINTER P , VEYTSMAN B , YOUTCHEFF J . Phase behavior of bituminous materials[J]. Energy & Fuels, 2015, 29(11): 7048-7057. |
74 | WU X , BHATTACHARYA S . Process for recovering solvent from spent oil sand solids: US8552244[P]. 2013-10-08. |
75 | WU X A , JONES G B , CYMERMAN G . Extraction of oil sand bitumen with two solvents: US8858786[P]. 2014-10-14. |
76 | LI X G , WANG J , HE L , et al . Ionic liquid-assisted solvent extraction for unconventional oil recovery: computational simulation and experimental tests[J]. Energy & Fuels, 2016, 30(9): 7074-7081. |
77 | KAI Y , WANG Z , JIN Y , et al . Single-and multi-stage counter-current solvent extractions of bitumen from Xinjiang oil sand[J]. Energy & Fuels, 2013, 27(11): 6491-6500. |
78 | EI NAGGAR A Y , SAAD E A , KANDIL A T , et al . Petroleum cuts as solvent extractor for oil recovery from petroleum sludge[J]. Journal of Petroleum Technology and Alternative Fuels, 2010, 1(1): 10-19. |
79 | LEUNG H , PHILLIPS C R . Solvent extraction of mined Athabasca oil sands[J]. Industrial & Engineering Chemistry Fundamentals, 1985, 24(3): 373-379. |
80 | CORMACK D E , KENCHINGTON J M , PHILLIPS C R , et al . Parameters and mechanisms in the solvent extraction of mined athabasca oil sand[J]. The Canadian Journal of Chemical Engineering, 1977, 55(5): 572-580. |
81 | PAINTER P , WILLIAMS P , MANNEBACH E . Recovery of bitumen from oil or tar sands using ionic liquids[J]. Energy & Fuels, 2010, 24(2): 1094-1098. |
82 | PULATI N , TIGHE T , PAINTER P C . Bitumen-silica interactions in a deep eutectic ionic liquid analogue[J]. Energy & Fuels, 2016, 30(1): 249-255. |
83 | HOLLAND A , WECHSLER D , PATEL A , et al . Separation of bitumen from oil sands using a switchable hydrophilicity solvent[J]. Canadian Journal of Chemistry, 2012, 90(10): 805-810. |
84 | JESSOP P G , PHAN L N , CARRIER A J , et al . Switchable hydrophilicity solvents and methods of use thereof: US8900444[P]. 2014-12-02. |
85 | SUI Hong, XU Lin , LI Xingang , et al . Understanding the roles of switchable-hydrophilicity tertiary amines in recovering heavy hydrocarbons from oil sands[J]. Chemical Engineering Journal, 2016, 290: 312-318. |
86 | VIET T T , LEE J H , RYU J W , et al . Hydrocracking of vacuum residue with activated carbon in supercritical hydrocarbon solvents[J]. Fuel, 2012, 94(1): 556-562. |
87 | VIET T T , LEE, HYUK J , et al . Hydrocracking of petroleum vacuum residue with activated carbon and metal additives in a supercritical m-xylene solvent[J]. Fuel, 2013, 103(1): 553-561. |
88 | SUBRAMANIAN M , HANSON F V . Supercritical fluid extraction of bitumens from Utah oil sands[J]. Fuel Processing Technology, 1998, 55(1): 35-53. |
89 | KIM D W , KORIAKIN A , JEONG S Y , et al . Co-processing of heavy oil with wood biomass using supercritical m-xylene and n-dodecane solvents[J]. Korean Journal of Chemical Engineering, 2017, 34(7): 1961-1969. |
90 | PAKDEL H , ROY C , KALKREUTH W . Oil production by vacuum pyrolysis of Canadian oil shales and fate of the biological markers[J]. Fuel, 1999, 78(3): 365-375. |
91 | MA Y, LI S . Study of the characteristics and kinetics of oil sand pyrolysis[J]. Energy & Fuels, 2010, 24(3): 1844-1847. |
92 | 何建国, 石微微, 曹祖宾, 等 . ATP 页岩干馏工艺柴油馏分加氢精制研究[J]. 现代化工, 2016, 36(10): 146-149. |
HE Jianguo , SHI Weiwei , CAO Zibin , et al . Reaction conditions for catalytic hydrotreating of diesel distillate from Fushun ATP shale retorting technology[J]. Modern Chemical Industry, 2016, 36(10): 146-149. | |
93 | LI S , CHEN X , WANG L , et al . Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresource Technology, 2013, 148(11): 24-29. |
94 | YANG X , YUAN C , XU J , et al . Co-pyrolysis of Chinese lignite and biomass in a vacuum reactor[J]. Bioresource Technology, 2014, 173: 1-5. |
95 | DOMINGUEZ A , MENENDEZ J , INGUANZO M , et al . Gas chromatographic-mass spectrometric study of the oil fractions produced by microwave-assisted pyrolysis of different sewage sludges[J]. Journal of Chromatography A, 2003, 1012(2): 193-206. |
96 | DOMINGUEZ A , MENéNDEZ J , PIS J . Hydrogen rich fuel gas production from the pyrolysis of wet sewage sludge at high temperature[J]. Journal of Analytical and Applied Pyrolysis, 2006, 77(2): 127-132. |
97 | 张开帅 . 印尼油砂加氢热解特性研究[D]. 大连: 大连理工大学, 2016. |
ZHANG Kaishuai . Study on hydropyrolysis characteristics of Indonesian oil sands[D]. Dalian: Dalian University of Technology, 2016. | |
98 | BRIDLE T U I . Critical factors for sludge pyrolysis in Australia[J]. Water(Australia), 2002, 29(4): 43-48. |
99 | NIMANA B , CANTER C , KUMAR A . Energy consumption and greenhouse gas emissions in the recovery and extraction of crude bitumen from Canada’s oil sands[J]. Energy, 2015, 143: 189-199. |
100 | MENG M , HU H , ZHANG Q , et al . Pyrolysis behaviors of Tumuji oil sand by thermogravimetry (TG) and in a fixed bed reactor[J]. Energy & Fuels, 2007, 21(4): 2245-2249. |
101 | 卢红杰, 宋锦玉 . 基于热裂解法的印尼油砂性质考察[J]. 科学技术与工程, 2012, 20(31): 8457-8459. |
LU Hongjie , SONG Jinyu . Evaluation of Indonesia’s oil sands properties based on pyrolysis[J]. Science Technology and Engineering, 2012, 20(31): 8457-8459. | |
102 | 李海英, 张贵杰, 高翔 . 非常规石油资源热解特性研究[J]. 石油与天然气化工, 2010, 39(3): 189-192. |
LI Haiying , ZHANG Guijie , GAO Xiang . Study on pyrolysis characteristics of non-conventional oil resource[J]. Chemical Engineering of Oil and Gas, 2010, 39(3): 189-192. | |
103 | 白翔, 马凤云, 刘景梅, 等 . 新疆托里油砂分段热解机理[J]. 化工学报, 2015, 66(11): 4626-4633. |
BAI Xiang , Fengyun MA , LIU Jingmei , et al . Segmenting pyrolysis mechanism of Tuoli oil sand in Xinjiang[J]. CIESC Journal, 2015, 66(11): 4626-4633. | |
104 | 宋薇, 刘建国, 聂永丰 . 含油污泥的热解特性研究[J]. 燃料化学学报, 2008, 36(3): 286-290. |
SONG Wei , LIU Jianguo , NIE Yongfeng . Pyrolysis properties of oil sludge[J]. Journal of Fuel Chemistry and Technology, 2008, 36(3): 286-290. | |
105 | 郭秀英, 王擎, 姜倩倩, 等 . 印尼油砂热解特性研究及动力学模型比较[J]. 东北电力大学学报, 2012, 32(2): 26-32. |
GUO Xiuying , WANG Qing , JIANG Qianqian , et al . Study of pyrolysis characteristics and comparison of kinetic models for Indonesian oil sands[J]. Journal of Northeast Dianli University, 2012, 32(2): 26-32. | |
106 | QIN L , HAN J , HE X , et al . Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor[J]. Journal of Environmental Management, 2015, 154: 177-182. |
107 | 王益民, 曹祖宾, 石俊峰, 等 . 哈萨克斯坦油砂干馏实验研究[J]. 石油与天然气化工, 2010, 39(2): 134-136, 143. |
WANG Yimin , CAO Zubin , SHI Junfeng , et al . Experimental study on oil sands dry distillation[J]. Chemical Engineering of Oil and Gas, 2010, 39(2): 134-136, 143. | |
108 | 王雅兰, 张会成, 关明华, 等 . 油砂沥青油的加工利用[J]. 石油学报 (石油加工), 2015, 31(2): 563-567. |
WANG Yalan , ZHANG Huicheng , GUAN Minghua , et al . Processing and utilization of bitumen oil from oil sands[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(2): 563-567. | |
109 | 张毅, 尚新立, 蒋永中, 等 . 一种油砂热解制备清洁燃料油的方法及装置: CN105087035A[P]. 2015. |
ZHANG Yi , SHANG Xinli , JIANG Yongzhogn , et al . Method and device for preparing clean fuel oil by pyrolysis of oil sand:CN105087035A[P]. 2015. | |
110 | 卢春喜, 徐春明, 李术元, 等 . 油砂直接流化床焦化的方法和装置: CN101358136[P]. 2009. |
LU Chunxi , XU Chunming , LI Shuyuan , et al . Method and device for direct fluidized bed coking of oil sands: CN101358136[P]. 2009. | |
111 | 毛少祥, 毕可军, 柏林红, 等 . 循环煤气热载体流化床粉煤热解装置: CN202246560U[P]. 2012. |
MAO Shaoxiang , BI Kejun , BAO Linhong , et al . Circulating gas heat carrier fluidized bed pulverized coal pyrolysis device: CN202246560U[P]. 2012. | |
112 | SCHMIDT S J . New directions for shale oil: path to a secure new oil supply well into this century: on the example of Australia[J]. Oil Shale, 2003, 20(3): 333-346. |
113 | VASSILEV S V , BAXTER D , ANDERSEN L K , et al . An overview of the chemical composition of biomass[J]. Fuel, 2010, 89(5): 913-933. |
114 | ZHANG Z , BEI H , LI H , et al . Understanding the co-pyrolysis behavior of indonesian oil sands and corn straw[J]. Energy & Fuels, 2017, 31(3): 2538-2547. |
115 | BOSISIO R , CAMBON J , CHAVARIE C , et al . Exprimental result on the hesting of Athabasca tar sand samples with microwave power[J]. Journal of Microwave Power, 1977, 12(4): 301-307. |
116 | ROBINSON J , SNAPE C , KINGMAN S , et al . Thermal desorption and pyrolysis of oil contaminated drill cuttings by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2008, 81(1): 27-32. |
117 | MENENDEZ J , INGUANZO M , PIS J . Microwave-induced pyrolysis of sewage sludge[J]. Water Research, 2002, 36(13): 3261-3264. |
118 | PAL K , NOGUEIRA BRANCO L D P , HEINTZ A , et al . Performance of solvent mixtures for non-aqueous extraction of Alberta oil sands[J]. Energy & Fuels, 2015, 29(4): 2261-2267. |
[1] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[2] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[3] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[4] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[5] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[6] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[7] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[8] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[9] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[10] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[11] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
[12] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[13] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[14] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[15] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |