Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (2): 1025-1035.DOI: 10.16085/j.issn.1000-6613.2021-0545
• Resources and environmental engineering • Previous Articles Next Articles
LI Hong1(), JI Ke1, Tianqinji QI1, LI Xiaojing1, WAN Huihui1, ZHANG Yongchun1, CHEN Shaoyun1,2()
Received:
2021-03-17
Revised:
2021-05-31
Online:
2022-02-23
Published:
2022-02-05
Contact:
CHEN Shaoyun
李红1(), 吉轲1, 齐天勤机1, 李晓静1, 万慧慧1, 张永春1, 陈绍云1,2()
通讯作者:
陈绍云
作者简介:
李红(1997—),女,硕士研究生,研究方向为二氧化碳捕集。E-mail:基金资助:
CLC Number:
LI Hong, JI Ke, Tianqinji QI, LI Xiaojing, WAN Huihui, ZHANG Yongchun, CHEN Shaoyun. Properties of CO2 absorption-desorption based on alcohol amines solutions and their degradation[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 1025-1035.
李红, 吉轲, 齐天勤机, 李晓静, 万慧慧, 张永春, 陈绍云. 复配醇胺溶液对CO2的吸收解吸性能及其降解性能[J]. 化工进展, 2022, 41(2): 1025-1035.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0545
序号 | 复配溶液 | 质量分数/% |
---|---|---|
1 | AEEA+H2O | 30+70 |
2 | AEEA+MEA+DEEA+H2O | 7.5+15+7.5+70 |
3 | AEEA+GI+H2O | 30+50+20 |
4 | AEEA+SUL+PZ① | 30+60+10 |
5 | AMP+DEA+MDEA+H2O | 10+10+10+70 |
6 | AMP+DMSO+AEEA② | 27+63+10 |
7 | AMPD+PZ+H2O | 20+10+70 |
8 | EMEA+DEEA+PZ③ | 27+63+10 |
9 | MDEA+MEA+PZ④ | 30+50+20 |
序号 | 复配溶液 | 质量分数/% |
---|---|---|
1 | AEEA+H2O | 30+70 |
2 | AEEA+MEA+DEEA+H2O | 7.5+15+7.5+70 |
3 | AEEA+GI+H2O | 30+50+20 |
4 | AEEA+SUL+PZ① | 30+60+10 |
5 | AMP+DEA+MDEA+H2O | 10+10+10+70 |
6 | AMP+DMSO+AEEA② | 27+63+10 |
7 | AMPD+PZ+H2O | 20+10+70 |
8 | EMEA+DEEA+PZ③ | 27+63+10 |
9 | MDEA+MEA+PZ④ | 30+50+20 |
1 | FAN Jingli, XU Mao, LI Fengyu, et al. Carbon capture and storage (CCS) retrofit potential of coal-fired power plants in China: the technology lock-in and cost optimization perspective[J]. Applied Energy, 2018, 229: 326-334. |
2 | DESIDERI U. Advanced absorption processes and technology for carbon dioxide (CO2) capture in power plants[M]//Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology. Amsterdam: Elsevier, 2010: 155-182. |
3 | 李函珂, 党成雄, 杨光星, 等. 面向二氧化碳捕集的过程强化技术进展[J]. 化工进展, 2020, 39(12): 4919-4939. |
LI Hanke, DANG Chengxiong, YANG Guangxing, et al. Process intensification techniques towards carbon dioxide capture: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4919-4939. | |
4 | 吴涛, 桑圣欢, 祁亚军, 等. 水泥厂碳捕集工艺技术[J]. 水泥技术, 2020(4): 90-95. |
WU Tao, SANG Shenghuan, QI Yajun, et al. Carbon capture technology in cement plant[J]. Cement Technology, 2020(4): 90-95. | |
5 | 邬高翔, 田瑞. 二氧化碳捕集技术研究进展[J]. 云南化工, 2020, 47(4): 22-23. |
WU Gaoxiang, TIAN Rui. Research progress of carbon dioxide capture technology[J]. Yunnan Chemical Technology, 2020, 47(4): 22-23. | |
6 | 王建行, 赵颖颖, 李佳慧, 等. 二氧化碳的捕集、固定与利用的研究进展[J]. 无机盐工业, 2020, 52(4): 12-17. |
WANG Jianhang, ZHAO Yingying, LI Jiahui, et al. Research progress of carbon dioxide capture, fixation and utilization[J]. Inorganic Chemicals Industry, 2020, 52(4): 12-17. | |
7 | 周旭健, 李清毅, 陈瑶姬, 等. 化学吸收法在燃后区CO2捕集分离中的研究和应用[J]. 能源工程, 2019(3): 58-66. |
ZHOU Xujian, LI Qingyi, CHEN Yaoji, et al. Chemical solvents for post-combustion CO2 capture: a review[J]. Energy Engineering, 2019(3): 58-66. | |
8 | 陈鸿伟, 张泽, 孙玮, 等. 介孔材料CO2吸附性能的研究进展[J]. 材料导报, 2016, 30(5): 63-68. |
CHEN Hongwei, ZHANG Ze, SUN Wei, et al. Review on CO2 adsorption performance of mesoporous materials[J]. Materials Review, 2016, 30(5): 63-68. | |
9 | 刘丽影, 宫赫, 王哲, 等. 捕集高湿烟气中CO2的变压吸附技术[J]. 化学进展, 2018, 30(6): 872-878. |
LIU Liying, GONG He, WANG Zhe, et al. Application of pressure swing adsorption technology to capture CO2 in highly humid flue gas[J]. Progress in Chemistry, 2018, 30(6): 872-878. | |
10 | 时飞, 李奕帆. 混合基质膜在碳捕集领域的研究进展[J]. 化工进展, 2020, 39(6): 2453-2462. |
SHI Fei, LI Yifan. Advances of mixed matrix membrane for CO2 capture[J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2453-2462. | |
11 | 华东阳, 李睿, 马梦桐, 等. 基于膜分离法的沼气脱CO2和H2S工艺研究[J]. 中国沼气, 2020, 38(4): 34-38. |
HUA Dongyang, LI Rui, MA Mengtong, et al. Parameter optimization of CO2 and H2S removal from biogas based on membrane separation[J]. China Biogas, 2020, 38(4): 34-38. | |
12 | 伍勇东, 赵丹, 任吉中, 等. Pebax/TPP共混膜的制备及CO2分离性能研究[J]. 膜科学与技术, 2020, 40(1): 37-44. |
WU Yongdong, ZHAO Dan, REN Jizhong, et al. CO2 separation property of Pebax/TPP blend membranes[J]. Membrane Science and Technology, 2020, 40(1): 37-44. | |
13 | 李鑫, 王永洪, 张新儒, 等. 分子量和NaY添加量对炭分子筛膜CO2分离性能的影响[J]. 现代化工, 2020, 40(S1): 159-165. |
LI Xin, WANG Yonghong, ZHANG Xinru, et al. Effects of molecular weight and NaY addition on separation performance of carbon molecular sieve membrane for CO2[J]. Modern Chemical Industry, 2020, 40(S1): 159-165. | |
14 | 喻忠厚. 日本用超临界二氧化碳提纯法分离天然成分成功[N]. 化学工业日报, 1985-09-21. |
YU Zhonghou. Japan succeeds in separating natural ingredients by supercritical carbon dioxide purification[N]. Japan Chemical Daily, 1985-09-21. | |
15 | SHARIF M, ZHANG T T, WU X M, et al. Evaluation of CO2 absorption performance by molecular dynamic simulation for mixed secondary and tertiary amines[J]. International Journal of Greenhouse Gas Control, 2020, 97: 103059. |
16 | 唐婧. 海螺集团在高质量发展道路上笃定前行[J]. 中国水泥, 2020(2): 50-55. |
TANG Jing. Conch moves forward with determination on the road of high-quality development[J]. China Cement, 2020(2): 50-55. | |
17 | KARNWIBOON K, SAIWAN C, IDEM R, et al. Solvent extraction of degradation products in amine absorption solution for CO2 capture in flue gases from coal combustion: effect of amines[J]. Energy Procedia, 2017, 114: 1980-1985. |
18 | KARNWIBOON K, KRAJANGPIT W, SUPAP T, et al. Solvent extraction based reclaiming technique for the removal of heat stable salts (HSS) and neutral degradation products from amines used during the capture of carbon dioxide (CO2) from industrial flue gases[J]. Separation and Purification Technology, 2019, 228: 115744. |
19 | LIU Fei, FANG Mengxiang, DONG Wenfeng, et al. Carbon dioxide absorption in aqueous alkanolamine blends for biphasic solvents screening and evaluation[J]. Applied Energy, 2019, 233/234: 468-477. |
20 | NWAOHA C, SAIWAN C, TONTIWACHWUTHIKUL P, et al. Carbon dioxide (CO2) capture: absorption-desorption capabilities of 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ) and monoethanolamine (MEA) tri-solvent blends[J]. Journal of Natural Gas Science and Engineering, 2016, 33: 742-750. |
21 | BIHONG Lv, YANG Kexuan, ZHOU Xiaobin, et al. 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy efficient and non-corrosive carbon dioxide capture[J]. Applied Energy, 2020, 264: 114703. |
22 | KARLSSON H K, DRABO P, SVENSSON H. Precipitating non-aqueous amine systems for absorption of carbon dioxide using 2-amino-2-methyl-1-propanol[J]. International Journal of Greenhouse Gas Control, 2019, 88: 460-468. |
23 | DUATEPE F P G, ORHAN O Y, ALPER E. Kinetics of carbon dioxide absorption by nonaqueous solutions of promoted sterically hindered amines[J]. Energy Procedia, 2017, 114: 57-65. |
24 | GORDESLI F P, UME C S, ALPER E. Mechanism and kinetics of carbon dioxide capture using activated 2-amino-2-methyl-1,3-propanediol[J]. International Journal of Chemical Kinetics, 2013, 45(9): 566-573. |
25 | ZHANG Rui, ZHANG Xiaowen, YANG Qi, et al. Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC)[J]. Applied Energy, 2017, 205: 1002-1011. |
26 | CLOSMANN F, NGUYEN T, ROCHELLE G T. MDEA/piperazine as a solvent for CO2 capture[J]. Energy Procedia, 2009, 1(1): 1351-1357. |
27 | 储可弘, 陈绍云, 李强, 等. 基于N-乙基乙醇胺非水CO2吸收剂的抗氧化剂[J]. 化工进展, 2019, 38(12): 5565-5571. |
CHU Kehong, CHEN Shaoyun, LI Qiang, et al. Oxidation inhibitor for thylethanolamine based non-aqueous CO2 absorbent[J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5565-5571. | |
28 | LEPAUMIER H, PICQ D, CARRETTE P L. New amines for CO2 capture. Ⅱ. Oxidative degradation mechanisms[J]. Ind. Eng. Chem. Res., 2009, 48(20): 9068-9075. |
29 | LEPAUMIER H, PICQ D, CARRETTE P L. New amines for CO2 capture. Ⅰ. Mechanisms of amine degradation in the presence of CO2[J]. Ind. Eng. Chem. Res., 2009, 48(20): 9061-9067. |
30 | GOUEDARD C, PICQ D, LAUNAY F, et al. Amine degradation in CO2 capture. I. A review[J]. International Journal of Greenhouse Gas Control, 2012, 10: 244-270. |
31 | VEGA F, CANO M, SANNA A, et al. Oxidative degradation of a novel AMP/AEP blend designed for CO2 capture based on partial oxy-combustion technology[J]. Chemical Engineering Journal, 2018, 350: 883-892. |
32 | WANG T L, JENS K J. Oxidative degradation of AMP/MEA blends for post-combustion CO2 capture[J]. Energy Procedia, 2013, 37: 306-313. |
33 | WANG T L, JENS K J. Towards an understanding of the oxidative degradation pathways of AMP for post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2015, 37: 354-361. |
[1] | LI Jitong, WANG Gang, XIONG Yaxuan, XU Qian. Energy and exergy analysis of single-effect absorption refrigeration system with different refrigerants [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 104-112. |
[2] | YANG Hanyue, KONG Lingzhen, CHEN Jiaqing, SUN Huan, SONG Jiakai, WANG Sicheng, KONG Biao. Decarbonization performance of downflow tubular gas-liquid contactor of microbubble-type [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 197-204. |
[3] | WANG Shengyan, DENG Shuai, ZHAO Ruikai. Research progress on carbon dioxide capture technology based on electric swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 233-245. |
[4] | DAI Huantao, CAO Lingyu, YOU Xinxiu, XU Haoliang, WANG Tao, XIANG Wei, ZHANG Xueyang. Adsorption properties of CO2 on pomelo peel biochar impregnated by lignin [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 356-363. |
[5] | CHEN Chongming, CHEN Qiu, GONG Yunqian, CHE Kai, YU Jinxing, SUN Nannan. Research progresses on zeolite-based CO2 adsorbents [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 411-419. |
[6] | ZHANG Fengqi, CUI Chengdong, BAO Xuewei, ZHU Weixuan, DONG Hongguang. Design and evaluation of sweetening process with amine solution absorption and multiple desorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 518-528. |
[7] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[8] | SHI Keke, LIU Muzi, ZHAO Qiang, LI Jinping, LIU Guang. Properties and research progress of magnesium based hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4731-4745. |
[9] | SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938. |
[10] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[11] | CHU Tiantian, LIU Runzhu, DU Gaohua, MA Jiahao, ZHANG Xiao’a, WANG Chengzhong, ZHANG Junying. Preparation and chemical degradability of organoguanidine-catalyzed dehydrogenation type RTV silicone rubbers [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3664-3673. |
[12] | BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846. |
[13] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[14] | GONG Pengcheng, YAN Qun, CHEN Jinfu, WEN Junyu, SU Xiaojie. Properties and mechanism of eriochrome black T degradation by carbon nanotube-cobalt ferrite composites activated persulfate [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3572-3581. |
[15] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |