Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 75-85.DOI: 10.16085/j.issn.1000-6613.2021-0197
• Chemical processes and equipment • Previous Articles Next Articles
ZHANG Shuang1,2(), ZHAO Lixin1,2(), LIU Yang1,2, SONG Minhang3, LIU Lin1,2
Received:
2021-01-27
Revised:
2021-05-10
Online:
2022-01-24
Published:
2022-01-05
Contact:
ZHAO Lixin
张爽1,2(), 赵立新1,2(), 刘洋1,2, 宋民航3, 刘琳1,2
通讯作者:
赵立新
作者简介:
张爽(1997—),女,博士研究生,研究方向为流体机械及工程。E-mail:基金资助:
CLC Number:
ZHANG Shuang, ZHAO Lixin, LIU Yang, SONG Minhang, LIU Lin. Analysis of flow field distribution and separation characteristics of degassing and oil-removal hydrocyclone system[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 75-85.
张爽, 赵立新, 刘洋, 宋民航, 刘琳. 脱气除油旋流系统流场分布及分离特性[J]. 化工进展, 2022, 41(1): 75-85.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0197
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
气液分离器主直径D1/mm | 58 | 气液分离器高度H1/mm | 460 |
外层旋流器主直径D2/mm | 72 | 内锥高度H2/mm | 130 |
内层旋流器主直径D3/mm | 30 | 油滴重构旋流器高度H3/mm | 300 |
气相出口直径D4/mm | 15 | 内层旋流器旋流段高度H4/mm | 45 |
内层油相出口直径D5/mm | 5 | 内层旋流器锥段高度H5/mm | 110 |
内层旋流器底流段直径D6/mm | 15 | 内层旋流器底流段高度H6/mm | 75 |
外层旋流器底流段直径D7/mm | 32 | 外层旋流器旋流段高度H7/mm | 75 |
外层油相出口直径D8/mm | 23 | 外层旋流器锥段高度H8/mm | 125 |
水相出口直径D9/mm | 10 | 外层旋流器底流段高度H9/mm | 25 |
内锥底面直径D10/mm | 30 | 油滴重构旋流器入口高度H10/mm | 20 |
内层旋流器锥段锥度α1/(°) | 9 | 内层切向入口高度H11/mm | 7.4 |
外层旋流器锥段锥度α2/(°) | 19 | 外层切向入口高度H12/mm | 12.6 |
结构参数 | 数值 | 结构参数 | 数值 |
---|---|---|---|
气液分离器主直径D1/mm | 58 | 气液分离器高度H1/mm | 460 |
外层旋流器主直径D2/mm | 72 | 内锥高度H2/mm | 130 |
内层旋流器主直径D3/mm | 30 | 油滴重构旋流器高度H3/mm | 300 |
气相出口直径D4/mm | 15 | 内层旋流器旋流段高度H4/mm | 45 |
内层油相出口直径D5/mm | 5 | 内层旋流器锥段高度H5/mm | 110 |
内层旋流器底流段直径D6/mm | 15 | 内层旋流器底流段高度H6/mm | 75 |
外层旋流器底流段直径D7/mm | 32 | 外层旋流器旋流段高度H7/mm | 75 |
外层油相出口直径D8/mm | 23 | 外层旋流器锥段高度H8/mm | 125 |
水相出口直径D9/mm | 10 | 外层旋流器底流段高度H9/mm | 25 |
内锥底面直径D10/mm | 30 | 油滴重构旋流器入口高度H10/mm | 20 |
内层旋流器锥段锥度α1/(°) | 9 | 内层切向入口高度H11/mm | 7.4 |
外层旋流器锥段锥度α2/(°) | 19 | 外层切向入口高度H12/mm | 12.6 |
含气体积分数/% | 位置 | d0.1/mm | d0.5/mm | d0.9/mm |
---|---|---|---|---|
20 | 入口 | 0.003 | 0.024 | 0.072 |
油相出口 | 0.004 | 0.175 | 0.325 | |
水相出口 | 0.003 | 0.029 | 0.264 | |
30 | 入口 | 0.002 | 0.019 | 0.048 |
油相出口 | 0.023 | 0.063 | 0.373 | |
水相出口 | 0.012 | 0.050 | 0.109 |
含气体积分数/% | 位置 | d0.1/mm | d0.5/mm | d0.9/mm |
---|---|---|---|---|
20 | 入口 | 0.003 | 0.024 | 0.072 |
油相出口 | 0.004 | 0.175 | 0.325 | |
水相出口 | 0.003 | 0.029 | 0.264 | |
30 | 入口 | 0.002 | 0.019 | 0.048 |
油相出口 | 0.023 | 0.063 | 0.373 | |
水相出口 | 0.012 | 0.050 | 0.109 |
含气体积分数/% | 试验值/mg·L-1 | 模拟值/mg·L-1 |
---|---|---|
10 | 947 | 1253 |
15 | 2083 | 1574 |
20 | 2661 | 1849 |
25 | 3026 | 2154 |
30 | 3521 | 2286 |
含气体积分数/% | 试验值/mg·L-1 | 模拟值/mg·L-1 |
---|---|---|
10 | 947 | 1253 |
15 | 2083 | 1574 |
20 | 2661 | 1849 |
25 | 3026 | 2154 |
30 | 3521 | 2286 |
气相出口分流比/% | 试验值/mg·L-1 | 模拟值/mg·L-1 |
---|---|---|
20 | 3277 | 2634 |
25 | 2293 | 1853 |
30 | 1659 | 1748 |
35 | 2661 | 1849 |
气相出口分流比/% | 试验值/mg·L-1 | 模拟值/mg·L-1 |
---|---|---|
20 | 3277 | 2634 |
25 | 2293 | 1853 |
30 | 1659 | 1748 |
35 | 2661 | 1849 |
1 | 赵立新, 蒋明虎, 孙德智. 旋流分离技术研究进展[J]. 化工进展, 2005, 24(10): 1118-1123. |
ZHAO L X, JIANG M H, SUN D Z. Recent progress of hydrocyclone separation research[J]. Chemical Industry and Engineering Progress, 2005, 24(10): 1118-1123. | |
2 | 肖学. 水力旋流器应用的现状及发展趋势[J]. 化工设备与管道, 2018, 55(3): 37-41. |
XIAO X. Current situation and developing trend of hydrocyclone[J]. Process Equipment & Piping, 2018, 55(3): 37-41. | |
3 | 罗小明, 高奇峰, 刘萌, 等. 轴流式气-液旋流分离器分离特性[J]. 石油学报(石油加工), 2020, 36(3): 592-599. |
LUO X M, GAO Q F, LIU M, et al. Separation characteristics of axial-flow gas-liquid cyclone separator[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(3): 592-599. | |
4 | 赵立新, 王羕, 罗雅君, 等. 溢流管结构对三相分离器分离效率的影响[J]. 流体机械, 2014, 42(3): 6-9. |
ZHAO L X, WANG Y, LUO Y J, et al. Effect of overflow tube structure on the separation efficiency of three-phase hydrocyclone[J]. Fluid Machinery, 2014, 42(3): 6-9. | |
5 | 袁惠新, 严沁萍, 李双双. 操作参数对三相分离旋流器分离性能影响的研究[J]. 现代化工, 2016, 36(8): 190-193. |
YUAN H X, YAN Q P, LI S S. Influence of operating parameters on separation performance of a three-phase hydrocyclone[J]. Modern Chemical Industry, 2016, 36(8): 190-193. | |
6 | 刘合, 高扬, 裴晓含, 等. 旋流式井下油水分离同井注采技术发展现状及展望[J]. 石油学报, 2018, 39(4): 463-471. |
LIU H, GAO Y, PEI X H, et al. Progress and prospect of downhole cyclone oil-water separation with single-well injection-production technology[J]. Acta Petrolei Sinica, 2018, 39(4): 463-471. | |
7 | 王朝阳, 杨强, 许萧, 等. 旋流脱气性能影响因素的CFD模拟[J]. 化工进展, 2015, 34(6): 1569-1575, 1581. |
WANG C Y, YANG Q, XU X, et al. CFD simulation of influence factors of degassing performance of hydrocyclone[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1569-1575, 1581. | |
8 | 刘扬. 大型油气网络系统优化理论及方法[M]. 北京: 科学出版社, 2019. |
LIU Y. Optimization theories and methodologies for large-scale oil and gas network system[M]. Beijing: Science Press, 2019. | |
9 | 郭树平, 吴家祥, 于勇, 等. 油气水三相分离器的研究进展[J]. 石油机械, 2016, 44(9): 104-108. |
GUO S P, WU J X, YU Y, et al. Progress of research on oil-gas-water separator[J]. China Petroleum Machinery, 2016, 44(9): 104-108. | |
10 | 刘晓燕, 刘扬. 油气水三相流流型国内外实验研究进展[J]. 管道技术与设备, 2007(4): 1-3. |
LIU X Y, LIU Y. Advance of the domestic and overseas flow pattern experimental study of oil-gas-water three-phase flow[J]. Pipeline Technique and Equipment, 2007(4): 1-3. | |
11 | 王圆. 螺旋结构三相分离旋流器流场分析与结构优选[D]. 大庆: 东北石油大学, 2017. |
WANG Y. Flow field analysis and structure optimization of spiral structure three-phase separation hydrocyclone[D]. Daqing: Northesat Petroleum University, 2017. | |
12 | BEDNARSKI S, LISTEWNIK J. Hydrocyclones for simultaneous removal of oil and solid particles from ship’s oil water[J]. Filtration & Separation, 1988, 25(2): 92-97. |
13 | 郑娟. 用于气-水-砂三相分离的水力旋流器的实验研究[D]. 大连: 大连理工大学, 2005. |
ZHENG J. Study the gas-liquid-sand three-phase hydroycelone[D]. Dalian: Dalian University of Technology, 2005. | |
14 | 蒋明虎, 韩龙, 赵立新, 等. 内锥式三相旋流分离器分离性能研究[J]. 化工机械, 2011, 38(4): 434-439. |
JIANG M H, HAN L, ZHAO L X, et al. Study on separation performance of cone-typed three-phase cyclone separator[J]. Chemical Engineering & Machinery, 2011, 38(4): 434-439. | |
15 | 周俊鹏. 油-气-水三相分离旋流器流场特性研究[D]. 大庆: 东北石油大学, 2011. |
ZHOU J P. Study on flow field characteristics of oil-gas-water three phase separation hydrocyclone[D]. Daqing: Northesat Petroleum University, 2011. | |
16 | 郑小涛, 龚程, 徐红波, 等. 油-水-气三相旋流器分离验证及气-液腔结构优化[J]. 武汉工程大学学报, 2014, 36(10): 37-41. |
ZHENG X T, GONG C, XU H B, et al. Verification of separation performance of oil-water-gas cyclone and optimization of structure of liquid-gas separation chamber[J]. Journal of Wuhan Institute of Technology, 2014, 36(10): 37-41. | |
17 | 卢秋羽. 脱气除油一体化旋流器分离特性研究[D]. 大庆: 东北石油大学, 2018. |
LU Q Y. Study on separation characteristics of degassing and oil removal integrated hydrocyclone[D]. Daqing: Northesat Petroleum University, 2018. | |
18 | 卢秋羽, 刘合, 宋健. 脱气除油一体化旋流器结构参数优选[J]. 机械科学与技术, 2020, 39(11): 1691-1697. |
LU Q Y, LIU H, SONG J. Optimization of structural parameters of integrated cyclone for degassing and oil removal[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(11): 1691-1697. | |
19 | 艾昕宇. 油-气-水三相旋流分离特性研究[D]. 西安: 西安石油大学, 2019. |
AI X Y. Study on separation characteristics of oil-gas-water three-phase hydrocyclone[D]. Xi’an: Xi’an Shiyou University, 2019. | |
20 | 马骏, 何亚其, 白健华, 等. 入口结构对粒径重构旋流器分离性能影响分析[J].机械科学与技术, 2021, 40(9): 1347-1354. |
MA J, HE Q Y, BAI J H, et al. Impact analysis of inlet structure on performance of hydrocyclone with droplet size reconstruction[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1347-1354. | |
21 | 邢雷, 蒋明虎, 张勇, 等. 轴入导锥式旋流器内油滴聚并破碎特性[J]. 中国石油大学学报(自然科学版), 2019, 43(2): 140-147. |
XING L, JIANG M H, ZHANG Y, et al. Analysis of droplet coalescence and breakage characteristics in axis-in hydrocyclone with diversion-cone[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 140-147. | |
22 | 刘义刚, 马骏, 何亚其, 等.粒径重构旋流器油水分离特性研究[J]. 石油机械, 2020, 48(10): 90-97. |
LIU Y G, MA J, HE Y Q, et al. Study on the oil-water separation performance of the droplet size reconstruction hydrocyclone[J]. China Petroleum Machinery, 2020, 48(10): 90-97. | |
23 | 赵立新, 宋民航, 杨宏燕, 等. 基于粒径选择的水力旋流分离装置: CN109290075B[P]. 2020-06-02. |
ZHAO L X, SONG M H, YANG H Y, et al. Hydrocyclone separation device based on particle size selection: CN109290075B[P]. 2020-06-02. | |
24 | 于勇. FLUENT入门与进阶教程[M]. 北京: 北京理工大学出版社, 2008. |
YU Y. Introduction and advanced course of FLUENT[M]. Beijing: Beijing Institute of Technology Press, 2008. | |
25 | PADHI M, MANGADODDY N, SREENIVAS T, et al. Study on multi-component particle behaviour in a hydrocyclone classifier using experimental and computational fluid dynamics techniques[J]. Separation and Purification Technology, 2019, 229: 115698. |
26 | WANG C X, JI C, ZOU J. Simulation and experiment on transitional behaviours of multiphase flow in a hydrocyclone[J]. The Canadian Journal of Chemical Engineering, 2015, 93(10): 1802-1811. |
27 | 袁惠新, 叶娟, 胡兴潮, 等. 基于群体平衡模型的旋流萃取元件的数值模拟[J]. 石油化工, 2017, 46(12): 1500-1506. |
YUAN H X, YE J, HU X C, et al. Numerical simulation of cyclone extraction element based on population balance model[J]. Petrochemical Technology, 2017, 46(12): 1500-1506. | |
28 | 左晶, 王娟, 王江云, 等. 采用群体平衡模型模拟多段环流反应器内的气-液两相流动[J]. 石油学报(石油加工), 2016, 32(6): 1134-1141. |
ZUO J, WANG J, WANG J Y, et al. Application of population balance model in flow characteristics prediction of multi-stage air-lift loop reactor[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2016, 32(6): 1134-1141. | |
29 | LYU L, ZHAO W J, ZHONG X M, et al. Fabrication of magnetically inorganic/organic superhydrophobic fabrics and their applications[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45296-45305. |
30 | NARASIMHA M, MAINZA A N, HOLTHAM P N, et al. A semimechanistic model of hydrocyclones-developed from industrial data and inputs from CFD[J]. International Journal of Mineral Processing, 2014, 133: 1-12. |
31 | 徐保蕊, 蒋明虎, 赵立新. 采出液黏度对三相分离旋流器性能的影响[J]. 机械工程学报, 2017, 53(8): 175-182. |
XU B R, JIANG M H, ZHAO L X. Effect of production fluid viscosity on the performance of three phase separation hydrocyclone[J]. Journal of Mechanical Engineering, 2017, 53(8): 175-182. | |
32 | 蒋明虎, 赵立新, 李枫, 等.旋流分离技术[M]. 哈尔滨: 哈尔滨工业大学出版社, 2000. |
JIANG M H, ZHAO L X, LI F, et al. Cyclone separation technology[M]. Harbin: Harbin Institute of Technology Press, 2000. | |
33 | 张西兆, 陈建义, 王峥, 等. 分流比对脱水型旋流器性能影响的实验研究[J]. 炼油技术与工程, 2017, 47(3): 35-40, 49. |
ZHANG X Z, CHEN J Y, WANG Z, et al. Experimental study of impact of split ratio on performances of dewatering hydrocyclone[J]. Petroleum Refinery Engineering, 2017, 47(3): 35-40, 49. | |
34 | 周立坤, 滕厚开, 葛庆峰, 等. 海上低渗油田采出液回注绿色工艺技术开发[J]. 工业水处理, 2021, 41(2): 108-112. |
ZHOU L K, TENG H K, GE Q F, et al. Development of green technology for produced fluids reinjection in offshore low permeability oilfield[J]. Industrial Water Treatment, 2021, 41(2): 108-112. | |
35 | 杨树坤, 郭宏峰, 段凯滨, 等. 小型化水质改善技术在海上油田的应用[J]. 石油与天然气化工, 2018, 47(6): 104-110. |
YANG S K, GUO H F, DUAN K B, et al. Application of water quality treatment technology in an offshore oilfield[J]. Chemical Engineering of Oil and Gas, 2018, 47(6): 104-110. |
[1] | GUO Qiang, ZHAO Wenkai, XIAO Yonghou. Numerical simulation of enhancing fluid perturbation to improve separation of dimethyl sulfide/nitrogen via pressure swing adsorption [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 64-72. |
[2] | SHAO Boshi, TAN Hongbo. Simulation on the enhancement of cryogenic removal of volatile organic compounds by sawtooth plate [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 84-93. |
[3] | WANG Tai, SU Shuo, LI Shengrui, MA Xiaolong, LIU Chuntao. Dynamic behavior of single bubble attached to the solid wall in the AC electric field [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 133-141. |
[4] | CHEN Kuangyin, LI Ruilan, TONG Yang, SHEN Jianhua. Structure design of gas diffusion layer in proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 246-259. |
[5] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[6] | CHEN Lin, XU Peiyuan, ZHANG Xiaohui, CHEN Jie, XU Zhenjun, CHEN Jiaxiang, MI Xiaoguang, FENG Yongchang, MEI Deqing. Investigation on the LNG mixed refrigerant flow and heat transfer characteristics in coil-wounded heat exchanger (CWHE) system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4496-4503. |
[7] | LIU Xuanlin, WANG Yikai, DAI Suzhou, YIN Yonggao. Analysis and optimization of decomposition reactor based on ammonium carbamate in heat pump [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4522-4530. |
[8] | ZHAO Xi, MA Haoran, LI Ping, HUANG Ailing. Simulation analysis and optimization design of mixing performance of staggered impact micromixer [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4559-4572. |
[9] | WANG Lanjiang, LIANG Yu, TANG Qiong, TANG Mingxing, LI Xuekuan, LIU Lei, DONG Jinxiang. Synthesis of highly dispersed Pt/HY catalyst by rapid pyrolysis of platinum precursors and its performance for deep naphthalene hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4159-4166. |
[10] | YE Zhendong, LIU Han, LYU Jing, ZHANG Yaning, LIU Hongzhi. Optimization of thermochemical energy storage reactor based on calcium and magnesium binary salt hydrates [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4307-4314. |
[11] | YU Junnan, YU Jianfeng, CHENG Yang, QI Yibo, HUA Chunjian, JIANG Yi. Performance prediction of variable-width microfluidic concentration gradient chips by deep learning [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3383-3393. |
[12] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[13] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[14] | ZHOU Longda, ZHAO Lixin, XU Baorui, ZHANG Shuang, LIU Lin. Advances in electrostatic-cyclonic coupling enhanced multiphase media separation research [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3443-3456. |
[15] | ZHANG Chenyu, WANG Ning, XU Hongtao, LUO Zhuqing. Performance evaluation of the multiple layer latent heat thermal energy storage unit combined with nanoparticle for heat transfer enhancement [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2332-2342. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |