Chemical Industry and Engineering Progress ›› 2022, Vol. 41 ›› Issue (1): 133-145.DOI: 10.16085/j.issn.1000-6613.2021-0303
• Energy processes and technology • Previous Articles Next Articles
LI Pan1,2,3(), SHI Xiaopeng1,2,3, SONG Jiande2,3, FANG Shuqi1,2,3, BAI Jing1,2,3, CHANG Chun1,2,3()
Received:
2021-02-05
Revised:
2021-03-12
Online:
2022-01-24
Published:
2022-01-05
Contact:
CHANG Chun
李攀1,2,3(), 师晓鹏1,2,3, 宋建德2,3, 方书起1,2,3, 白净1,2,3, 常春1,2,3()
通讯作者:
常春
作者简介:
李攀(1987—),男,副教授,研究方向为生物质资源化利用。E-mail:基金资助:
CLC Number:
LI Pan, SHI Xiaopeng, SONG Jiande, FANG Shuqi, BAI Jing, CHANG Chun. Research progress of biomass microwave catalytic pyrolysis for preparation of high value-added products[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 133-145.
李攀, 师晓鹏, 宋建德, 方书起, 白净, 常春. 生物质微波催化热解制备高值产品的研究进展[J]. 化工进展, 2022, 41(1): 133-145.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0303
31 | ZHOU Y, WANG Y P, FAN L L, et al. Fast microwave-assisted catalytic co-pyrolysis of straw stalk and soapstock for bio-oil production[J]. Journal of Analytical and Applied Pyrolysis, 2017, 124: 35-41. |
32 | IDRIS R, CHONG C T, ASIK J A, et al. Optimization studies of microwave-induced co-pyrolysis of empty fruit bunches/waste truck tire using response surface methodology[J]. Journal of Cleaner Production, 2020, 244: 118649. |
33 | 陈坤. 改性多级孔分子筛微波催化共热解生物质与低密度聚乙烯制富烃油研究[D]. 镇江: 江苏大学, 2020. |
CHEN Kun. Study on hydrocarbon-rich oil production from microwave catalytic co-pyrolysis of biomass and low density polyethylene using modified multistage pore molecular sieve[D]. Zhenjiang: Jiangsu University, 2020. | |
34 | BU Q, CHEN K, XIE W, et al. Hydrocarbon rich bio-oil production, thermal behavior analysis and kinetic study of microwave-assisted co-pyrolysis of microwave-torrefied lignin with low density polyethylene[J]. Bioresource Technology, 2019, 291: 121860. |
35 | SURIAPPARAO D V, VINU R, SHUKLA A, et al. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation[J]. Bioresource Technology, 2020, 302: 122775. |
36 | SEKAR M, MATHIMANI T, ALAGUMALAI A, et al. A review on the pyrolysis of algal biomass for biochar and bio-oil—Bottlenecks and scope[J]. Fuel, 2021, 283: 119190. |
37 | ELLISON C R, HOFF R, MĂRCULESCU C, et al. Investigation of microwave-assisted pyrolysis of biomass with char in a rectangular waveguide applicator with built-in phase-shifting[J]. Applied Energy, 2020, 259: 114217. |
38 | MOHD MOKHTA Z, ONG M Y, SALMAN B, et al. Simulation studies on microwave-assisted pyrolysis of biomass for bioenergy production with special attention on waveguide number and location[J]. Energy, 2020, 190: 116474. |
39 | HU Z F, MA X Q, CHEN C X. A study on experimental characteristic of microwave-assisted pyrolysis of microalgae[J]. Bioresource Technology, 2012, 107: 487-493. |
40 | HONG Y, CHEN W R, LUO X, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237: 47-56. |
41 | CHEN L, YU Z S, XU H, et al. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives[J]. Bioresource Technology, 2019, 273: 34-39. |
1 | 姜克隽, 冯升波. 走向《巴黎协定》温升目标:已经在路上[J]. 气候变化研究进展, 2021, 17(1): 1-6. |
JIANG Kejun, FENG Shengbo. Going to the mitigation targets in Paris Agreement: the world is on the road[J]. Climate Change Research, 2021, 17(1): 1-6. | |
42 | WANG N, TAHMASEBI A, YU J L, et al. A Comparative study of microwave-induced pyrolysis of lignocellulosic and algal biomass[J]. Bioresource Technology, 2015, 190: 89-96. |
43 | 缪晓玲, 吴庆余. 微藻生物质可再生能源的开发利用[J]. 可再生能源, 2003, 21(3): 13-16. |
MIAO Xiaoling, WU Qingyu. Exploitation of biomass renewable energy sources of microalgae[J]. Renewable Energy, 2003, 21(3): 13-16. | |
44 | 仉利, 姚宗路, 赵立欣, 等. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
2 | 《BP世界能源统计年鉴》(2020版)发布:全球2019年能源概况[J]. 煤化工, 2020, 48(3): 86. |
“BP Statistical Yearbook of World Energy” (2020Edition) released: Global Energy Overview in 2019[ [J]. Coal Chemical Industry, 2020, 48(3): 86. | |
44 | ZHANG Li, YAO Zonglu, ZHAO Lixin, et al. Research progress on preparation of high quality bio-oil by pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 139-150. |
45 | 吴爽, 刘金宇, 刘心好, 等. 生物质微波热解气化技术研究进展[J]. 辽宁石油化工大学学报, 2020, 40(5): 22-27. |
3 | 韩松. 中国能源结构与产业结构发展现状及灰色关联关系研究[J]. 工程建设标准化, 2020(7): 69-79. |
HAN Song. The grey correlation analysis of China's energy structure and industrial structure[J]. Standardization of Engineering Construction, 2020(7): 69-79. | |
4 | 赵明轩, 吕连宏, 张保留, 等. 中国能源消费、经济增长与碳排放之间的动态关系[J]. 环境科学研究, 2021, 34(6): 1509-1522. |
ZHAO Mingxuan, Lianhong LYU, ZHANG Chuan, et al. The dynamic relationship between China's energy consumption, economic growth and carbon emissions[J]. Research of Environmental Science, 2021, 34(6): 1509-1522. | |
5 | 邓光耀. 中国能源消费的关键路径研究——基于结构路径分析方法[J]. 邵阳学院学报(社会科学版), 2020, 19(6): 33-40. |
DENG Guangyao. A study of the critical path of China's energy consumption—Based on structural path analysis[J]. Journal of Shaoyang University (Social Science Edition), 2020, 19(6): 33-40. | |
6 | DAI L L, WANG Y P, LIU Y H, et al. A review on selective production of value-added chemicals via catalytic pyrolysis of lignocellulosic biomass[J]. Science of the Total Environment, 2020, 749: 142386. |
45 | WU Shuang, LIU Jinyu, LIU Xinhao, et al. Progress and outlook of microwave assisted pyrolysis in biomass gasification[J]. Journal of Liaoning Shihua University, 2020, 40(5): 22-27. |
46 | 游小英, 张秀娟, 王允圃, 等. 生物质微波裂解制备可再生燃油的研究现状与发展分析[J]. 中国农学通报, 2016, 32(11): 33-38. |
YOU Xiaoying, ZHANG Xiujuan, WANG Yunpu, et al. Research and development of microwave pyrolysis of biomass for renewable fuel production[J]. Chinese Agricultural Science Bulletin, 2016, 32(11): 33-38. | |
47 | MILLER D D, SMITH M W, SHEKHAWAT D. Microwave-induced selective decomposition of cellulose: computational and experimental mechanistic study[J]. Journal of Physics and Chemistry of Solids, 2021, 150: 109858. |
48 | ZHOU C B, ZHANG Y W, LIU Y, et al. Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation[J]. Energy, 2021, 218: 119398. |
49 | ADAM M, BENEROSO D, KATRIB J, et al. Microwave fluidized bed for biomass pyrolysis. Part Ⅰ: Process design[J]. Biofuels, Bioproducts and Biorefining, 2017, 11(4): 601-612. |
50 | WANG L, LEI H W, RUAN R. Techno-economic analysis of microwave-assisted pyrolysis for production of biofuels production of biofuels and chemicals with microwave[M]. Springer Netherlands, 2015. |
51 | PARVEZ A M, AFZAL M T, JIANG P, et al. Microwave-assisted biomass pyrolysis polygeneration process using a scaled-up reactor: Product characterization, thermodynamic assessment and bio-hydrogen production[J]. Biomass and Bioenergy, 2020, 139: 105651. |
7 | 曾媛, 王允圃, 张淑梅, 等. 生物质微波热解制备液体燃料和化学品的研究进展[J]. 化工进展, 2021, 40(6): 3151-3162. |
ZENG Yuan, WANG Yunpu, ZHANG Shumei, et al. Research progress in preparation of liquid fuels and chemicals by microwave pyrolysis of biomass[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3151-3162. | |
52 | BORGES F C, DU Z Y, XIE Q L, et al. Fast microwave assisted pyrolysis of biomass using microwave absorbent[J]. Bioresource Technology, 2014, 156: 267-274. |
53 | KHELFA A, RODRIGUES F A, KOUBAA M, et al. Microwave-assisted pyrolysis of pine wood sawdust mixed with activated carbon for bio-oil and bio-char production[J]. Processes, 2020, 8(11): 1437. |
54 | WANG Y P, DAI L L, WANG R P, et al. Hydrocarbon fuel production from soapstock through fast microwave-assisted pyrolysis using microwave absorbent[J]. Journal of Analytical and Applied Pyrolysis, 2016, 119: 251-258. |
55 | 张新伟, 王鑫, 陈平, 等. 复合微波吸收剂辅助生物质裂解制取生物油研究[J]. 当代化工, 2014, 43(8): 1407-1410. |
ZHANG Xinwei, WANG Xin, CHEN Ping, et al. Study on preparation of bio-oils by complex microwave absorbent-assisted pyrolysis of biomass[J]. Contemporary Chemical Industry, 2014, 43(8): 1407-1410. | |
56 | 樊永胜, 侯光喜, 熊永莲, 等. 复合吸波剂TiC/SiC诱导微波热解生物质试验研究[J]. 农业机械学报, 2020, 51(5): 331-338. |
FAN Yongsheng, HOU Guangxi, XIONG Yonglian, et al. Experiment on microwave pyrolysis of biomass induced by compound absorber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(5): 331-338. | |
57 | STATE R N, VOLCEANOV A, MULEY P, et al. A review of catalysts used in microwave assisted pyrolysis and gasification[J]. Bioresource Technology, 2019, 277: 179-194. |
58 | DAI L L, WANG Y P, LIU Y H, et al. Integrated process of lignocellulosic biomass torrefaction and pyrolysis for upgrading bio-oil production: a state-of-the-art review[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 20-36. |
59 | 李攀, 王贤华, 龚维婷, 等. 金属盐添加剂对生物质微波热解特性的影响[J]. 农业机械学报, 2013, 44(6): 162-167. |
LI Pan, WANG Xianhua, GONG Weiting, et al. Effects of metal salt additives on biomass microwave pyrolysis characteristic[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(6): 162-167. | |
60 | CHEN M Q, WANG J, ZHANG M X, et al. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of Analytical and Applied Pyrolysis, 2008, 82(1): 145-150. |
61 | PANG Y J, WU Y T, CHEN Y S, et al. Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine[J]. Renewable Energy, 2020, 162: 134-143. |
62 | 王日升, 彭鹏, 李婷婷, 等. 多级孔沸石分子筛的制备及其催化应用研究进展[J]. 化工进展, 2021, 40(4): 1849-1858. |
WANG Risheng, PENG Peng, LI Tingting, et al. Synthesis and application of hierarchical zeolite materials[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1849-1858. | |
63 | 冯晓娜. 国内分子筛催化剂的应用进展[J]. 化工设计通讯, 2018, 44(11): 134. |
8 | 程松. 生物质微波热解及热解炭用于重金属和染料废水处理的研究[D]. 昆明: 昆明理工大学, 2019. |
CHENG Song. Research on biomass microwave pyrolysis and pyrolysis carbon for heavy metal and dye wastewater treatment[D]. Kunming: Kunming University of Science and Technology, 2019. | |
9 | BHATTACHARYA M, BASAK T. A review on the susceptor assisted microwave processing of materials[J]. Energy, 2016, 97: 306-338. |
10 | FAHMY T Y A, FAHMY Y, MOBARAK F, et al. Biomass pyrolysis: past, present, and future[J]. Environment, Development and Sustainability, 2020, 22(1): 17-32. |
63 | FENG Xiaona. Progress in the application of domestic molecular sieve catalysts[J]. Chemical Engineering Design Communications, 2018, 44(11): 134. |
64 | 孙红. 多级孔ZSM-5分子筛的制备研究进展[J]. 化工管理, 2019(4): 78-80. |
SUN Hong. Research progress in the preparation of hierarchical pore ZSM-5 molecular sieves [J]. Chemical Enterprise Management, 2019(4): 78-80. | |
65 | FANCHIANG W L, LIN Y C. Catalytic fast pyrolysis of furfural over H-ZSM-5 and Zn/H-ZSM-5 catalysts[J]. Applied Catalysis A: General, 2012, 419/420: 102-110. |
66 | XIE W, LIANG J H, MORGAN H M, et al. Ex-situ catalytic microwave pyrolysis of lignin over Co/ZSM-5 to upgrade bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 132: 163-170. |
67 | NISHU, LIU R H, RAHMAN M M, et al. A review on the catalytic pyrolysis of biomass for the bio-oil production with ZSM-5: Focus on structure[J]. Fuel Processing Technology, 2020, 199: 106301. |
68 | LI Z Y, ZHONG Z P, ZHANG B, et al. Effect of alkali-treated HZSM-5 zeolite on the production of aromatic hydrocarbons from microwave assisted catalytic fast pyrolysis (MACFP) of rice husk[J]. Science of the Total Environment, 2020, 703: 134605. |
69 | 王达锐. ZSM-5分子筛孔道和结构多级化的方法及其催化性能研究[D]. 上海: 华东师范大学, 2016. |
WANG Darui. New methods for preparing hierarchical porous and structured catalysts and their application[D]. Shanghai: East China Normal University, 2016. | |
70 | LI X H, DONG L X, ZHANG J, et al. In-situ catalytic upgrading of biomass-derived vapors using HZSM-5 and MCM-41: effects of mixing ratios on bio-oil preparation[J]. Journal of the Energy Institute, 2019, 92(1): 136-143. |
71 | LAM S S, LIEW R K, CHENG C K, et al. Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char[J]. Applied Catalysis B: Environmental, 2015, 176/177: 601-617. |
72 | DAI L L, ZENG Z H, TIAN X J, et al. Microwave-assisted catalytic pyrolysis of torrefied corn cob for phenol-rich bio-oil production over Fe modified bio-char catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2019, 143: 104691. |
11 | WANG G Y, DAI Y J, YANG H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy & Fuels, 2020, 34(12): 15557-15578. |
12 | FOONG S Y, LIEW R K, YANG Y F, et al. Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges, and future directions[J]. Chemical Engineering Journal, 2020, 389: 124401. |
13 | GADKARI S, FIDALGO B, GU S. Numerical investigation of microwave-assisted pyrolysis of lignin[J]. Fuel Processing Technology, 2017, 156: 473-484. |
73 | AN Y, TAHMASEBI A, ZHAO X H, et al. Catalytic reforming of palm kernel shell microwave pyrolysis vapors over iron-loaded activated carbon: enhanced production of phenol and hydrogen[J]. Bioresource Technology, 2020, 306: 123111. |
74 | CHELLAPPAN S, APARNA K, CHINGAKHAM C, et al. Microwave assisted biodiesel production using a novel Brønsted acid catalyst based on nanomagnetic biocomposite[J]. Fuel, 2019, 246: 268-276. |
14 | MORGAN JR H M, BU Q, LIANG J H, et al. A review of catalytic microwave pyrolysis of lignocellulosic biomass for value-added fuel and chemicals[J]. Bioresource Technology, 2017, 230: 112-121. |
15 | MUTSENGERERE S, CHIHOBO C H, MUSADEMBA D, et al. A review of operating parameters affecting bio-oil yield in microwave pyrolysis of lignocellulosic biomass[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 328-336. |
16 | ZHANG Y N, CUI Y L, LIU S Y, et al. Fast microwave-assisted pyrolysis of wastes for biofuels production—A review[J]. Bioresource Technology, 2020, 297: 122480. |
17 | YIN C G. Microwave-assisted pyrolysis of biomass for liquid biofuels production[J]. Bioresource Technology, 2012, 120: 273-284. |
18 | HUANG Y F, CHIUEH P T, KUAN W H, et al. Microwave pyrolysis of lignocellulosic biomass: Heating performance and reaction kinetics[J]. Energy, 2016, 100: 137-144. |
75 | DONG Q, LI H J, NIU M M, et al. Microwave pyrolysis of moso bamboo for syngas production and bio-oil upgrading over bamboo-based biochar catalyst[J]. Bioresource Technology, 2018, 266: 284-290. |
76 | 王允圃. 粮油工业皂脚微波驱动催化热解制备富烃生物油的研究[D]. 南昌: 南昌大学, 2020. |
WANG Yunpu. Production of hydrocarbon-rich bio-oil using microwave-driven catalytic pyrolysis of vegetable oil soapstock[D]. Nanchang: Nanchang University, 2020. | |
77 | KUMAR R, STREZOV V, WELDEKIDAN H, et al. Lignocellulose biomass pyrolysis for bio-oil production: a review of biomass pre-treatment methods for production of drop-in fuels[J]. Renewable and Sustainable Energy Reviews, 2020, 123: 109763. |
78 | 方书起, 蒋璐瑶, 李攀, 等. 预处理生物质催化热解制取生物油的研究进展[J]. 现代化工, 2020, 40(4): 41-45, 50. |
FANG Shuqi, JIANG Luyao, LI Pan, et al. Research progress on preparation of bio-oil by catalytic pyrolysis of pretreated biomass[J]. Modern Chemical Industry, 2020, 40(4): 41-45, 50. | |
79 | 辛子扬, 葛立超, 冯红翠, 等. 生物质微波热解利用技术综述[J]. 热力发电, 2019, 48(7): 19-31. |
XIN Ziyang, GE Lichao, FENG Hongcui, et al. Application of microwave technology in biomass pyrolysis: a review[J]. Thermal Power Generation, 2019, 48(7): 19-31. | |
80 | 陈星. 车载式生物质热解制油特性及其过程优化研究[D]. 南京: 东南大学, 2019. |
CHEN Xing. Study on bio-oil production characteristics and pyrolysis process optimization of mobile biomass pyrolysis systems[D]. Nanjing: Southeast University, 2019. | |
81 | GE S B, YEK P N Y, CHENG Y W, et al. Progress in microwave pyrolysis conversion of agricultural waste to value-added biofuels: a batch to continuous approach[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110148. |
82 | 赵稳, 黄婷, 陈静, 等. 微波在生物质转化与利用中的应用研究[J]. 应用化工, 2020, 49(6): 1523-1526, 1531. |
ZHAO Wen, HUANG Ting, CHEN Jing, et al. Application of microwave in biomass conversion and utilization[J]. Applied Chemical Industry, 2020, 49(6): 1523-1526, 1531. | |
83 | 高作鹏. 微波热解工业固体废弃物及其气液产物研究[D]. 北京: 北京化工大学, 2018. |
19 | FARAG S, MUDRABOYINA B P, JESSOP P G, et al. Impact of the heating mechanism on the yield and composition of bio-oil from pyrolysis of kraft lignin[J]. Biomass and Bioenergy, 2016, 95: 344-353. |
20 | FAN L L, CHEN P, ZHOU N, et al. In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin[J]. Bioresource Technology, 2018, 247: 851-858. |
21 | WANG J, ZHONG Z P, SONG Z W, et al. Modification and regeneration of HZSM-5 catalyst in microwave assisted catalytic fast pyrolysis of mushroom waste[J]. Energy Conversion and Management, 2016, 123: 29-34. |
22 | ZHOU N, LIU S Y, ZHANG Y N, et al. Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass[J]. Bioresource Technology, 2018, 267: 257-264. |
23 | YANG X W, CUI C X, ZHENG A Q, et al. Ultrasonic and microwave assisted organosolv pretreatment of pine wood for producing pyrolytic sugars and phenols[J]. Industrial Crops and Products, 2020, 157: 112921. |
24 | 赵锦波, 苟鑫, 陈皓, 等. 多级孔分子筛在生物质催化热裂解制备芳烃中的研究进展[J]. 生物加工过程, 2019, 17(4): 329-341. |
ZHAO Jinbo, GOU Xin, CHEN Hao, et al. Recent advances in aromatic production from biomass via catalytic fast pyrolysis over hierarchical zeolite[J]. Chinese Journal of Bioprocess Engineering, 2019, 17(4): 329-341. | |
25 | DAS P, STOFFEL R B, AREA M C, et al. Effects of one-step alkaline and two-step alkaline/dilute acid and alkaline/steam explosion pretreatments on the structure of isolated pine lignin[J]. Biomass and Bioenergy, 2019, 120: 350-358. |
26 | ZHANG Z H, ZHAO Z K. Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid[J]. Bioresource Technology, 2010, 101(3): 1111-1114. |
27 | ZHENG Y W, WANG F, YANG X Q, et al. Study on aromatics production via the catalytic pyrolysis vapor upgrading of biomass using metal-loaded modified H-ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126: 169-179. |
28 | 谢俊峰. 水葫芦微波热解特性的实验研究[D]. 鞍山: 辽宁科技大学, 2020. |
XIE Junfeng. Experimental study on microwave pyrolysis characteristics of water hyacinth[D]. Anshan: University of Science and Technology Liaoning, 2020. | |
29 | WANG Y P, WU Q H, DUAN D L, et al. Ex-situ catalytic upgrading of vapors from fast microwave-assisted co-pyrolysis of Chromolaena odorata and soybean soapstock[J]. Bioresource Technology, 2018, 261: 306-312. |
30 | BU Q, CAO M J, WANG M, et al. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating[J]. Science of the Total Environment, 2021, 754: 142174. |
83 | GAO Zuopeng. Microwave-assisted pyrolysis of industrial solid waste and study on the gases and condensates[D]. Beijing: Beijing University of Chemical Technology, 2018. |
84 | LO S L, HUANG Y F, CHIUEH P T, et al. Microwave pyrolysis of lignocellulosic biomass[J]. Energy Procedia, 2017, 105: 41-46. |
85 | VARISLI D, KORKUSUZ C, DOGU T. Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts[J]. Applied Catalysis B: Environmental, 2017, 201: 370-380. |
86 | ZHOU Y L, WANG W L, SUN J, et al. Decomposition of methylbenzene over Fe0/ZSM-5 under microwave irradiation[J]. Catalysis Communications, 2017, 96: 63-68. |
87 | PARVEZ A M, WU T, AFZAL M T, et al. Conventional and microwave-assisted pyrolysis of gumwood: a comparison study using thermodynamic evaluation and hydrogen production[J]. Fuel Processing Technology, 2019, 184: 1-11. |
88 | 唐俊. 微波催化热解微藻特性研究及微藻气化发电的生命周期评价[D]. 南宁: 广西大学, 2020. |
TANG Jun. Study on the characteristics of composite additives on microwave assisted pyrolysis of microalgae and life cycle evaluation of microalgae gasification generation[D]. Nanning: Guangxi University, 2020. | |
89 | CHUN Y N, SONG H G. Microwave-induced cracking and reforming of benzene on activated carbon[J]. Chemical Engineering and Processing: Process Intensification, 2019, 135: 148-155. |
90 | 吴爽, 冯娅婷, 秦智榛, 等. 铁铜钛金属氧化物辅助微波热解角叉菜制气研究[J]. 稀有金属与硬质合金, 2020, 48(3): 54-59. |
WU Shuang, FENG Yating, QIN Zhizhen, et al. Study on gasification of chondrus ocellatus holm by iron/copper/titanium metal oxide assisted microwave pyrolysis[J]. Rare Metals and Cemented Carbides, 2020, 48(3): 54-59. | |
91 | GUEDES R E, LUNA A S, TORRES A R. Operating parameters for bio-oil production in biomass pyrolysis: a review[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 134-149. |
92 | 陈旭. 生物质富钙热解过程中生物油脱氧机理及调控机制研究[D]. 武汉: 华中科技大学, 2018. |
CHEN Xu. Study on the reaction mechanism and regulation method of bio-oil deoxygenation during biomass pyrolysis process with Ca-based additives[D]. Wuhan: Huazhong University of Science and Technology, 2018. | |
93 | ZHANG Y N, CHEN P, LIU S Y, et al. Microwave-assisted pyrolysis of biomass for bio-oil production[M]//Pyrolysis. InTech, 2017. |
94 | 郑志锋, 郑云武, 黄元波, 等. 木质生物质催化热解制备富烃生物油研究进展[J]. 林业工程学报, 2019, 4(2): 1-12. |
ZHENG Zhifeng, ZHENG Yunwu, HUANG Yuanbo, et al. Recent research progress on production of hydrocarbon-rich bio-oil through catalytic pyrolysis of lignocellulosic biomass[J]. Journal of Forestry Engineering, 2019, 4(2): 1-12. | |
95 | 余宏倡. 纤维素(葡萄糖)共模板多级孔ZSM-5分子筛的制备及催化裂解聚烯烃塑料的研究[D]. 南宁: 广西大学, 2020. |
YU Hongchang. Synthesis of hierarchical porous ZSM-5 zeolites with cellulose(glucose)as co-template and its application in catalysing of polyolefin plastics[D]. Nanning: Guangxi University, 2020. | |
96 | YU Z T, WANG Y P, JIANG L, et al. Microwave-assisted catalytic pyrolysis of Chinese tallow kernel oil for aromatic production in a downdraft reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 16-21. |
97 | MATHIARASU A, PUGAZHVADIVU M. Studies on dielectric properties and microwave pyrolysis of karanja seed[J]. Biomass Conversion and Biorefinery, 2021: 1-11. |
98 | RAVIKUMAR C, SENTHIL KUMAR P, SUBHASHNI S K, et al. Microwave assisted fast pyrolysis of corn cob, corn stover, saw dust and rice straw: Experimental investigation on bio-oil yield and high heating values[J]. Sustainable Materials and Technologies, 2017, 11: 19-27. |
99 | DING K, LIU S S, HUANG Y, et al. Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production[J]. Energy Conversion and Management, 2019, 196:1316-1325. |
100 | 郭晨旭. 微藻微波热解特性研究及微藻生物油发电的生命周期评价[D]. 南宁: 广西大学, 2020. |
GUO Chenxu. Study on microwave pyrolysis characteristics of microalgae and life cycle assessment of bio-oil power generation[D]. Nanning: Guangxi University, 2020. | |
101 | YU Z T, JIANG L, WANG Y P, et al. Catalytic pyrolysis of woody oil over SiC foam-MCM41 catalyst for aromatic-rich bio-oil production in a dual microwave system[J]. Journal of Cleaner Production, 2020, 255: 120179. |
102 | QIAO K, SHI X, ZHOU F, et al. Catalytic fast pyrolysis of cellulose in a microreactor system using hierarchical ZSM-5 zeolites treated with various alkalis[J]. Applied Catalysis A: General, 2017, 547: 274-282. |
103 | ZHANG B, ZHONG Z P, CHEN P, et al. Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5[J]. Journal of Analytical and Applied Pyrolysis, 2017, 127: 246-257. |
104 | KIM Y M, JAE J, KIM B S, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
105 | MONG G R, CHONG C T, NG J H, et al. Multivariate optimisation study and life cycle assessment of microwave-induced pyrolysis of horse manure for waste valorisation and management[J]. Energy, 2021, 216: 119194. |
106 | GAN Y Y, CHEN W H, ONG H C, et al. Effects of dry and wet torrefaction pretreatment on microalgae pyrolysis analyzed by TG-FTIR and double-shot Py-GC/MS[J]. Energy, 2020, 210: 118579. |
107 | TRIPATHI M, SAHU J N, GANESAN P. Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 467-481. |
108 | LI J, DAI J J, LIU G Q, et al. Biochar from microwave pyrolysis of biomass: a review[J]. Biomass and Bioenergy, 2016, 94: 228-244. |
109 | AO W Y, FU J, MAO X, et al. Microwave assisted preparation of activated carbon from biomass: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 92: 958-979. |
110 | NOMANBHAY S, ONG M. A review of microwave-assisted reactions for biodiesel production[J]. Bioengineering, 2017, 4(2): 57. |
111 | UKANWA K, PATCHIGOLLA K, SAKRABANI R, et al. A review of chemicals to produce activated carbon from agricultural waste biomass[J]. Sustainability, 2019, 11(22): 6204. |
112 | MAŠEK O, BUDARIN V, GRONNOW M, et al. Microwave and slow pyrolysis biochar—Comparison of physical and functional properties[J]. Journal of Analytical and Applied Pyrolysis, 2013, 100: 41-48. |
113 | NURYANA D, ALIM M F R, YAHAYU M, et al. Methylene blue removal using coconut shell biochar synthesized through microwave-assisted pyrolysis[J]. Jurnal Teknologi, 2020, 82(5): 31-41. |
114 | BUSHRA B, REMYA N. Biochar from pyrolysis of rice husk biomass—Characteristics, modification and environmental application[J]. Biomass Conversion and Biorefinery, 2020. DOI:10.1007/s13399-020-01092-3. |
115 | AZNI A A, WAN AZLINA WAN AB KARIM GHANI, IDRIS A, et al. Microwave-assisted pyrolysis of EFB-derived biochar as potential renewable solid fuel for power generation: biochar versus sub-bituminous coal[J]. Renewable Energy, 2019, 142: 123-129. |
116 | BOWLBY L K, SAHA G C, AFZAL M T. Flexural strength behavior in pultruded GFRP composites reinforced with high specific-surface-area biochar particles synthesized via microwave pyrolysis[J]. Composites A: Applied Science and Manufacturing, 2018, 110: 190-196. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | WU Haibo, WANG Xilun, FANG Yanxiong, JI Hongbing. Progress of the development and application of 3D printing catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3956-3964. |
[14] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[15] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |