1 |
刘文权, 吴记全. 高炉煤气高效、高值和创新利用技术[C]//第十二届中国钢铁年会论文集. 北京, 2019: 582-586.
|
|
LIU Wenquan, WU Jiquan. High efficiency, high value and innovative utilization technology of blast furnace gas[C]// Proceedings of the 12th China Iron and Steel Annual Conference. Beijing: The Chinese Society for Metals, 2019: 582-586.
|
2 |
LU Z D, GU H Z, CHEN L K, et al. A review of blast furnace iron-making at Baosteel facilities[J]. Ironmaking & Steelmaking, 2019, 46(7): 618-624.
|
3 |
张波, 薛庆斌, 牛得草, 等. 高炉煤气利用现状及节能减排新技术[J]. 炼铁, 2018, 37(2): 51-55.
|
|
ZHANG Bo, XUE Qingbin, NIU Decao, et al. Utilization result of BFG and new technology in energy conservation and emission reduction[J]. Ironmaking, 2018, 37(2): 51-55.
|
4 |
STALINSKII D V, KANENKO G M, ALKHASOVA V V, et al. Purification of blast-furnace gas and energy conservation[J]. Steel in Translation, 2008, 38(6): 499-504.
|
5 |
王一坤, 雷小苗, 邓磊, 等. 可燃废气利用技术研究进展(Ⅰ): 高炉煤气、转炉煤气和焦炉煤气[J]. 热力发电, 2014, 43(7): 1-9, 14.
|
|
WANG Yikun, LEI Xiaomiao, DENG Lei, et al. A review on utilization of combustible waste gas(Ⅰ): blast furnace gas, converter gas and coke oven gas[J]. Thermal Power Generation, 2014, 43(7): 1-9, 14.
|
6 |
LANZERSTORFER C, PREITSCHOPF W, NEUHOLD R, et al. Emissions and removal of gaseous pollutants from the top-gas of a blast furnace[J]. ISIJ International, 2019, 59(3): 590-595.
|
7 |
LANZERSTORFER C, KRÖPPL M. Air classification of blast furnace dust collected in a fabric filter for recycling to the sinter process[J]. Resources, Conservation and Recycling, 2014, 86: 132-137.
|
8 |
于勇, 朱廷钰, 刘霄龙. 中国钢铁行业重点工序烟气超低排放技术进展[J]. 钢铁, 2019, 54(9): 1-11.
|
|
YU Yong, ZHU Tingyu, LIU Xiaolong. Progress of ultra-low emission technology for key processes of iron and steel industry in China[J]. Iron & Steel, 2019, 54(9): 1-11.
|
9 |
SUN W Q, WANG Z H, WANG Q. Hybrid event-, mechanism- and data-driven prediction of blast furnace gas generation[J]. Energy, 2020, 199: 117497.
|
10 |
张显鹏. 铁合金辞典[M]. 沈阳: 辽宁科学技术出版社, 1996.
|
|
ZHANG Xianpeng. Dictionary of ferroalloy[M]. Shenyang: Liaoning Science and Technology Press, 1996.
|
11 |
刘二浩, 王强, 刘杰, 等. 高炉煤气布袋除尘系统管道板结原因分析及控制[J]. 河北冶金, 2020(2): 55-57.
|
|
LIU Erhao, WANG Qiang, LIU Jie, et al. Cause analysis and control of pipeline hardening in blast furnace gas bag dust collection system[J]. Hebei Metallurgy, 2020(2): 55-57.
|
12 |
TENG A J, HU B S, GUI Y L, et al. Influence of blast furnace top gas composition and dust on HCl removal with low temperature Ca-based dechlorination agent[J]. Journal of Central South University, 2018, 25(8): 1920-1927.
|
13 |
田敬龙. 高炉煤气干法除尘技术发展现状及宝钢应用前景[J]. 冶金动力, 2007, 26(6): 20-21, 30.
|
|
TIAN Jinglong. Present situation of dry process dusting technology of blast furnace gas and its application prospect in Baoshan iron & steel co., ltd[J]. Metallurgical Power, 2007, 26(6): 20-21, 30.
|
14 |
韩明荣, 黄龙强, 王英. 高炉煤气袋式除尘系统的问题及改进[J]. 环境工程学报, 2007, 1(10): 79-82.
|
|
HAN Mingrong, HUANG Longqiang, WANG Ying. Problems and improvement of blast furnace gas baggy dust disposal system[J]. Chinese Journal of Environmental Engineering, 2007, 1(10): 79-82.
|
15 |
赵彬. 高炉煤气布袋除尘技术的应用研究[D]. 唐山: 华北理工大学, 2019.
|
|
ZHAO Bin. Study on application of blast furnace gas bag dedusting technology[D]. Tangshan: North China University of Science and Technology, 2019.
|
16 |
XU J, WANG N, CHEN M, et al. Comparative investigation on the reduction behavior of blast furnace dust particles during in-flight process in hydrogen-rich and carbon monoxide atmospheres[J]. Powder Technology, 2020, 366: 709-721.
|
17 |
Д Жембус M, 张国铭. 氮气在高炉鼓风时的应用[J]. 低温与特气, 1988, 6(2): 47-50.
|
|
Жембус М Д, ZHANG Guoming. Application of nitrogen gas in blast furnace blowing [J]. Low Temperature and Specialty Gases, 1988, 6(2): 47-50.
|
18 |
BÂ A, CESSOU A, MARCANO N, et al. Oxyfuel combustion and reactants preheating to enhance turbulent flame stabilization of low calorific blast furnace gas[J]. Fuel, 2019, 242: 211-221.
|
19 |
LIU L Z, JIANG Z Y, ZHANG X R, et al. Effects of top gas recycling on in-furnace status, productivity, and energy consumption of oxygen blast furnace[J]. Energy, 2018, 163: 144-150.
|
20 |
秦民生, 张建良, 齐宝铭. 全氧鼓风高炉冶炼钒钛铁矿石的优越性[J]. 钢铁钒钛, 1991, 12(2): 1-6.
|
|
QIN Minsheng, ZHANG Jianliang, QI Baoming. The advantage of smelting vanadium titanium iron ore with full oxygen blast furnace[J]. Iron Steel Vanadium Titanium, 1991, 12(2): 1-6.
|
21 |
CHAI Y F, ZHANG J L, SHAO Q J, et al. Experiment research on pulverized coal combustion in the tuyere of oxygen blast furnace[J]. High Temperature Materials and Processes, 2019, 38(2019): 42-49.
|
22 |
雷志亮. 氧气高炉工艺的探讨研究[D]. 沈阳: 东北大学, 2014.
|
|
LEI Zhiliang. Theoretical exploration on oxygen blast furnace process[D]. Shenyang: Northeastern University, 2014.
|
23 |
钟章格, 池伟强, 黄智斌. 高炉煤气脉冲布袋除尘技术的应用[J]. 冶金能源, 2004, 23(2): 16-19.
|
|
ZHONG Zhangge, CHI Weiqiang, HUANG Zhibin. Application of pulse-bag filters dust removal on the blast furnace gas purification system[J]. Energy for Metallurgical Industry, 2004, 23(2): 16-19.
|
24 |
李维国. 高炉煤气全干法除尘工艺技术[J]. 宝钢技术, 2004(6): 63-64.
|
|
LI Weiguo. Dry dust removal technology of blast furnace gas[J]. Bao Steel Technology, 2004(6): 63-64.
|
25 |
YIN J Q, HE Y R, LIU X C, et al. Visiting CH4 formation and C1+C1 couplings to tune CH4 selectivity on Fe surfaces[J]. Journal of Catalysis, 2019, 372: 217-225.
|
26 |
谈付安. 高炉煤气含水量对煤气热值的影响[J]. 冶金动力, 2006, 25(4): 23-24.
|
|
Tan Fu'an. Influence of moisture in blast furnace on gas calorific value[J]. Metallurgical Power, 2006, 25(4): 23-24.
|
27 |
兰臣臣, 张淑会, 武兵强, 等. 氯元素对高炉冶炼的影响分析及展望[J]. 钢铁研究学报, 2015, 27(10): 1-5.
|
|
LAN Chenchen, ZHANG Shuhui, WU Bingqiang, et al. Effect analysis and prospect of chlorine in blast furnace[J]. Journal of Iron and Steel Research, 2015, 27(10): 1-5.
|
28 |
SUN W Q, XU X D, ZHANG Y, et al. Chlorine corrosion of blast furnace gas pipelines: analysis from thermal perspective[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55(2): 197-208.
|
29 |
刘小杰. 氯在高炉内的反应行为研究[D]. 沈阳: 东北大学, 2015.
|
|
LIU Xiaojie. Study on reaction behavior of chlorine in BF[D]. Shenyang: Northeastern University, 2015.
|
30 |
李寒旭. TGA-FTIR联合技术对煤燃烧过程中氯的析出特征研究[J]. 煤炭转化, 1996, 19(3): 40-50.
|
|
LI Hanxu. The emission of chlorine during coal combustion by TGA-FTIR[J]. Coal Conversion, 1996, 19(3): 40-50.
|
31 |
TSUBOUCHI N, MOCHIZUKI Y, WANG Y H, et al. Fate of the chlorine in coal in the heating process[J]. ISIJ International, 2018, 58(2): 227-235.
|
32 |
WANG Z H, JIANG M, NING P, et al. Thermodynamic modeling and gaseous pollution prediction of the yellow phosphorus production[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12194-12202.
|
33 |
宁坚, 靳虎, 王泽安, 等. 煤中氯的赋存与释放特性研究进展[J]. 煤炭学报, 2019, 44(9): 2886-2897.
|
|
NING JIAN, JIN HU, WANG Ze’an, et al. Research advances on the occurrence and release characteristics of chlorine in coal[J]. Journal of China Coal Society, 2019, 44(9): 2886-2897.
|
34 |
舒保华, 徐国兴. 高炉煤气洗涤水中氰化物的来源[J]. 江西冶金, 1985, 5(6): 40-46.
|
|
SHU Baohua, XU Guoxing. Source of cyanide in blast furnace gas washing water [J]. Jiangxi Metallurgy, 1985, 5(6): 40-46.
|
35 |
BRÜGER A, FAFILEK G, RESTREPO B O J, et al. On the volatilisation and decomposition of cyanide contaminations from gold mining[J]. Science of the Total Environment, 2018, 627: 1167-1173.
|
36 |
申岩峰, 王美君, HU Yong-feng, 等. 高硫炼焦煤化学结构及硫赋存形态对硫热变迁的影响[J]. 燃料化学学报, 2020, 48(2): 144-153.
|
|
SHEN Yanfeng, WANG Meijun, HU Yong-feng, et al. Effect of chemical structure and sulfur speciation of high-sulfur coking coals on sulfur transformation during pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2020, 48(2): 144-153.
|
37 |
张文成, 张小勇, 郑明东. 冶金焦炭硫形态及其对高炉煤气硫的影响[J]. 冶金能源, 2019, 38(2): 55-59.
|
|
ZHANG Wencheng, ZHANG Xiaoyong, ZHENG Mingdong. Sulfur form of metallurgical coke influence on sulfur in blast furnace gas[J]. Energy for Metallurgical Industry, 2019, 38(2): 55-59.
|
38 |
郭玉华. 高炉煤气净化提质利用技术现状及未来发展趋势[J]. 钢铁研究学报, 2020, 32(7): 525-531.
|
|
GUO Yuhua. Current station and tendency of purification and upgrading of blast furnace gas[J]. Journal of Iron and Steel Research, 2020, 32(7): 525-531.
|
39 |
YASIPOURTEHRANI S, TIAN S C, STREZOV V, et al. Development of robust CaO-based sorbents from blast furnace slag for calcium looping CO2 capture[J]. Chemical Engineering Journal, 2020, 387: 124140.
|
40 |
孙加亮, 杨伟明, 杜雄伟. 高炉煤气脱硫现状及技术路线分析[J]. 冶金动力, 2020, 39(10): 13-18.
|
|
SUN Jialiang, YANG Weiming, DU Xiongwei. Present situation and technical route analysis of blast furnace gas desulfurization[J]. Metallurgical Power, 2020, 39(10): 13-18.
|
41 |
袁涌天, 尹燕华, 周旭, 等. CO、CO2及其共存体系的甲烷化反应[J]. 化工进展, 2014, 33(S1): 173-180.
|
|
YUAN Yongtian, YIN Yanhua, ZHOU Xu, et al. Methanation of thoree different reaction systems of carbon oxides[J]. Chemical Industry and Engineering Progress, 2014, 33(S1): 173-180.
|
42 |
GLARBORG P, MARSHALL P. Oxidation of reduced sulfur species: carbonyl sulfide[J]. International Journal of Chemical Kinetics, 2013, 45(7): 429-439.
|
43 |
ABIÁN M, CEBRIÁN M, MILLERA Á, et al. CS2 and COS conversion under different combustion conditions[J]. Combustion and Flame, 2015, 162(5): 2119-2127.
|
44 |
GUO F, LI S, HOU Y, et al. Metalated carbon nitrides as base catalysts for efficient catalytic hydrolysis of carbonyl sulfide[J]. Chemical Communications, 2019, 55(75): 11259-11262.
|
45 |
刘俊锋, 刘永春, 薛莉, 等. Al2O3上羰基硫常温催化水解的氧中毒机理[J]. 物理化学学报, 2007, 23(7): 997-1002.
|
|
LIU Junfeng, LIU Yongchun, XUE Li, et al. Oxygen poisoning mechanism of catalytic hydrolysis of OCS over Al2O3 at room temperature[J]. Acta Physico-Chimica Sinica, 2007, 23(7): 997-1002.
|
46 |
刘娜, 宁平, 李凯, 等. HCN、COS和CS2催化水解及其水解产物协同净化的研究进展[J]. 化工进展, 2018, 37(1): 301-310.
|
|
LIU Na, NING Ping, LI Kai, et al. Research progress in catalytic hydrolysis of HCN, COS and CS2 and synergetic purification of hydrolysates[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 301-310.
|
47 |
易红宏, 赵顺征, 唐晓龙. 羰基硫低温催化水解技术[M]. 北京: 科学出版社, 2014.
|
|
YI Honghong, ZHAO Shunzheng, TANG Xiaolong. Technology of COS catalytic hydrolysis under low temperature [M]. Beijing: Science Press, 2014.
|
48 |
梁美生, 李春虎, 郭汉贤, 等. 红外光谱法对COS水解催化剂氧中毒行为的研究[J]. 燃料化学学报, 2002, 30(4): 347-352.
|
|
LIANG Meisheng, LI Chunhu, GUO Hanxian, et al. Ftir study on oxygen poisoning behavior of Cos hydrolysis catalyst[J]. Journal of Fuel Chemistry and Technology, 2002, 30(4): 347-352.
|
49 |
XU Y K, JU S G, WANG Z X, et al. The study of the preparation of catalysts for carbonyl sulfide hydrolysis under moderate temperature[J]. Journal of Materials Science and Chemical Engineering, 2018, 6(4): 31-38.
|
50 |
SUN Z, LIU J P, SUN Z Q. Synergistic decarbonization and desulfurization of blast furnace gas via a novel magnesium-molybdenum looping process[J]. Fuel, 2020, 279: 118418.
|
51 |
刘艳霞, 上官炬, 王泽鑫, 等. TiO2改性γ-Al2O3基催化剂的中温水解羰基硫活性[J]. 化工进展, 2018, 37(10): 3885-3894.
|
|
LIU Yanxia, SHANGGUAN Ju, WANG Zexin, et al. Moderate temperature COS hydrolysis activity of γ-Al2O3 based catalyst modified by TiO2[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3885-3894.
|
52 |
WANG X Q, MA Y X, NING P, et al. Adsorption of carbonyl sulfide on modified activated carbon under low-oxygen content conditions[J]. Adsorption, 2014, 20(4): 623-630.
|
53 |
WANG X Q, QIU J, NING P, et al. Adsorption/desorption of low concentration of carbonyl sulfide by impregnated activated carbon under micro-oxygen conditions[J]. Journal of Hazardous Materials, 2012, 229/230: 128-136.
|
54 |
BACHELIER J, ABOULAYT A, LAVALLEY J C, et al. Activity of different metal oxides towards COS hydrolysis. Effect of SO2 and sulfation[J]. Catalysis Today, 1993, 17(1/2): 55-62.
|
55 |
CORTÉS-ARRIAGADA D, VILLEGAS-ESCOBAR N, ORTEGA D E. Fe-doped graphene nanosheet as an adsorption platform of harmful gas molecules (CO, CO2, SO2 and H2S), and the co-adsorption in O2 environments[J]. Applied Surface Science, 2018, 427: 227-236.
|
56 |
JOSHI J N, ZHU G H, LEE J J, et al. Probing metal–organic framework design for adsorptive natural gas purification[J]. Langmuir, 2018, 34(29): 8443-8450.
|
57 |
谢巍, 常丽萍, 余江龙, 等. 煤气净化中H2S干法脱除的研究进展[J]. 化工学报, 2006, 57(9): 2012-2020.
|
|
XIE Wei, CHANG Liping, YU Jianglong, et al. Research progress of removal of H2S from coal gas by dry method[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(9): 2012-2020.
|
58 |
BANDOSZ T J. On the adsorption/oxidation of hydrogen sulfide on activated carbons at ambient temperatures[J]. Journal of Colloid and Interface Science, 2002, 246(1): 1-20.
|
59 |
GARDNER T H, BERRY D A, DAVID LYONS K, et al. Fuel processor integrated H2S catalytic partial oxidation technology for sulfur removal in fuel cell power plants[J]. Fuel, 2002, 81(17): 2157-2166.
|
60 |
WU X X, SCHWARTZ V, OVERBURY S H, et al. Desulfurization of gaseous fuels using activated carbons as catalysts for the selective oxidation of hydrogen sulfide[J]. Energy & Fuels, 2005, 19(5): 1774-1782.
|
61 |
HANDY H, SANTOSO A, WIDODO A, et al. H2S-CO2 separation using room temperature ionic liquid [BMIM][Br][J]. Separation Science and Technology, 2014, 49(13): 2079-2084.
|