Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (12): 6490-6498.DOI: 10.16085/j.issn.1000-6613.2021-1367
• Column: multiphase flow test • Previous Articles Next Articles
XIE Jun(), LI Chenxi, ZHU Zhengren, MA Haodong, LI Rundong()
Received:
2021-06-30
Revised:
2021-08-31
Online:
2021-12-21
Published:
2021-12-05
Contact:
LI Rundong
通讯作者:
李润东
作者简介:
谢俊(1987—),女,博士,硕士生导师,研究方向为颗粒动力学。E-mail: 基金资助:
CLC Number:
XIE Jun, LI Chenxi, ZHU Zhengren, MA Haodong, LI Rundong. Numerical study on particle impacting single particle powdery layer[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6490-6498.
谢俊, 李晨曦, 朱正仁, 马昊东, 李润东. 颗粒撞击单颗粒覆层的数值计算[J]. 化工进展, 2021, 40(12): 6490-6498.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-1367
颗粒材料 | 密度/kg·m-3 | 粒径/μm | 泊松比 | 杨氏模量/GPa |
---|---|---|---|---|
聚苯乙烯 | 1040~1070 | 1.27 | 0.33 | 3~3.5 |
抛光石英 | 2600 | — | 0.17 | 54 |
颗粒材料 | 密度/kg·m-3 | 粒径/μm | 泊松比 | 杨氏模量/GPa |
---|---|---|---|---|
聚苯乙烯 | 1040~1070 | 1.27 | 0.33 | 3~3.5 |
抛光石英 | 2600 | — | 0.17 | 54 |
壁面材料 | 颗粒材料 | 黏附功w/J·m-2 | 刚度K/GPa |
---|---|---|---|
抛光石英 | 聚苯乙烯 | 0.052 | 4.563 |
壁面材料 | 颗粒材料 | 黏附功w/J·m-2 | 刚度K/GPa |
---|---|---|---|
抛光石英 | 聚苯乙烯 | 0.052 | 4.563 |
关键点 | 接触位移δ/nm | 接触半径α/nm |
---|---|---|
B | 1.033 | 44.368 |
S | -0.853 | 13.437 |
关键点 | 接触位移δ/nm | 接触半径α/nm |
---|---|---|
B | 1.033 | 44.368 |
S | -0.853 | 13.437 |
物性参数 | 颗粒-壁面 | 颗粒-颗粒 |
---|---|---|
有效杨氏模量E*/GPa | 66.103 | 48.235 |
有效刚度K/GPa | 88.137 | 64.313 |
有效质量m*/kg | 12.850×10-12 | 6.425×10-12 |
黏附功w/J·m–2 | 0.197 | 0.078 |
有效半径R*/μm | 10.500 | 5.250 |
接触半径α/nm | ||
B点 | 166.851 | 85.804 |
C点 | 105.109 | 54.053 |
S点 | 50.531 | 25.986 |
接触位移δ/nm | ||
B点 | 0.884 | 0.467 |
C点 | -0.351 | -0.186 |
S点 | -0.730 | -0.386 |
黏附剥离功Wst/J | 66.506×10-16 | 6.982×10-16 |
临界捕集速度vst/m·s-1 | 0.0322 | 0.0147 |
物性参数 | 颗粒-壁面 | 颗粒-颗粒 |
---|---|---|
有效杨氏模量E*/GPa | 66.103 | 48.235 |
有效刚度K/GPa | 88.137 | 64.313 |
有效质量m*/kg | 12.850×10-12 | 6.425×10-12 |
黏附功w/J·m–2 | 0.197 | 0.078 |
有效半径R*/μm | 10.500 | 5.250 |
接触半径α/nm | ||
B点 | 166.851 | 85.804 |
C点 | 105.109 | 54.053 |
S点 | 50.531 | 25.986 |
接触位移δ/nm | ||
B点 | 0.884 | 0.467 |
C点 | -0.351 | -0.186 |
S点 | -0.730 | -0.386 |
黏附剥离功Wst/J | 66.506×10-16 | 6.982×10-16 |
临界捕集速度vst/m·s-1 | 0.0322 | 0.0147 |
1 | LEE J R, JEON S, HASOLLI N, et al. Removal characteristics of paint particles generated from paint spray booths[J]. Journal of Material Cycles and Waste Management, 2019, 21(4): 810-817. |
2 | DANESHIAN B, GAERTNER F, ASSADI H, et al. Size effects of brittle particles in aerosol deposition-molecular dynamics simulation[J]. Journal of Thermal Spray Technology, 2021, 30(3): 503-522. |
3 | 于忠臣, 刘长春, 董喜贵, 等. 深层滤床反冲洗技术及其油田水处理领域应用进展[J]. 化工进展, 2021, 40(5): 2753-2761. |
YU Zhongchen, LIU Changchun, DONG Xigui, et al. Deep bed backwashing process and its application progress in oily water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2753-2761. | |
4 | KLEINHANS U, WIELAND C, FRANDSEN F J, et al. Ash formation and deposition in coal and biomass fired combustion systems: progress and challenges in the field of ash particle sticking and rebound behavior[J]. Progress in Energy and Combustion Science, 2018, 68: 65-168. |
5 | BAXTER L L, DESOLLAR R W. A mechanistic description of ash deposition during pulverized coal combustion: predictions compared with observations[J]. Fuel, 1993, 72(10): 1411-1418. |
6 | KLEINHANS U, RÜCK R, SCHMID S, et al. Alkali vapor condensation on heat exchanging surfaces: laboratory-scale experiments and a mechanistic CFD modeling approach[J]. Energy & Fuels, 2016, 30(11): 9793-9800. |
7 | LI X, DUNN P F, BRACH R M. Experimental and numerical studies of microsphere oblique impact with planar surfaces[J]. Journal of Aerosol Science, 2000, 31(5): 583-594. |
8 | HERTZ H. Miscellaneous papers[M]. London: Macmillan, 1896: 146-162. |
9 | RAYLEIGH L. ⅩⅫ. On the production of vibrations by forces of relatively long duration, with application to the theory of collisions[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1906, 11(62): 283-291. |
10 | WALL S, JOHN W, WANG H C, et al. Measurements of kinetic energy loss for particles impacting surfaces[J]. Aerosol Science and Technology, 1990, 12(4): 926-946. |
11 | 王云萍. 微尺度颗粒与平板碰撞的模拟研究[D]. 大连: 大连理工大学, 2019. |
WANG Yunping. Simulation study for micro-particle impact on flat surface[D]. Dalian: Dalian University of Technology, 2019. | |
12 | 牛佳佳, 王锁芳, 李洁琼, 等. 粒子撞击树脂涂层/铝/合金钢板的反弹特性试验[J]. 航空动力学报, 2018, 33(4): 928-935. |
NIU Jiajia, WANG Suofang, LI Jieqiong, et al. Experiment of particle rebound characteristics for impingement on resin coated/Al/alloy steel plate[J]. Journal of Aerospace Power, 2018, 33(4): 928-935. | |
13 | BEEK M C VAN, RINDT C C M, WIJERS J G, et al. Rebound characteristics for 50μm particles impacting a powdery deposit[J]. Powder Technology, 2006, 165(2): 53-64. |
14 | KONSTANDOPOULOS A G. Deposit growth dynamics: particle sticking and scattering phenomena[J]. Powder Technology, 2000, 109(1/2/3): 262-277. |
15 | ABD-ELHADY M S, RINDT C C M, WIJERS J G, et al. Modelling the impaction of a micron particle with a powdery layer[J]. Powder Technology, 2006, 168(3): 111-124. |
16 | JOHNSON K L, KENDALL K, ROBERTS A D. Surface energy and the contact of elastic solids[J]. Proceedings of the Royal Society A, 1971, 324(1558): 301-13. |
17 | CHEN S, LI S Q, YANG M M. Sticking/rebound criterion for collisions of small adhesive particles: effects of impact parameter and particle size[J]. Powder Technology, 2015, 274: 431-440. |
18 | CHEN X Z, ELLIOTT J A. On the scaling law of JKR contact model for coarse-grained cohesive particles[J]. Chemical Engineering Science, 2020, 227: 115906. |
19 | 柳冠青. 范德华力和静电力下的细颗粒离散动力学研究[D]. 北京: 清华大学, 2011. |
LIU Guanqing. Discrete element methods of fine particle dynamics in presence of van der waals and electrostatic forces[D]. Beijing: Tsinghua University, 2011. | |
20 | YIN KEK K. Numerical modelling of agglomerate degradation[D]. Birmingham: Aston University, 1992. |
21 | THORNTON C, NING Z M. A theoretical model for the stick/bounce behaviour of adhesive, elastic-plastic spheres[J]. Powder Technology, 1998, 99(2): 154-162. |
22 | TSUJI Y, TANAKA T, ISHIDA T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology, 1992, 71(3): 239-250. |
23 | MARSHALL J S. Discrete-element modeling of particulate aerosol flows[J]. Journal of Computational Physics, 2009, 228(5): 1541-1561. |
24 | DAHNEKE B. Measurements of bouncing of small latex spheres[J]. Journal of Colloid and Interface Science, 1973, 45(3): 584-590. |
25 | DAHNEKE B. Further measurements of the bouncing of small latex spheres[J]. Journal of Colloid and Interface Science, 1975, 51(1): 58-65. |
26 | KIM O V, DUNN P F. A microsphere-surface impact model for implementation in computational fluid dynamics[J]. Journal of Aerosol Science, 2007, 38(5): 532-549. |
27 | KRIJT S, GÜTTLER C, HEIßELMANN D, et al. Energy dissipation in head-on collisions of spheres[J]. Journal of Physics D: Applied Physics, 2013, 46(43): 435303. |
28 | ABD-ELHADY M S, RINDT C C M, STEENHOVEN A A VAN. Contact time of an incident particle hitting a 2D bed of particles[J]. Powder Technology, 2009, 191(3): 315-326. |
29 | XIE J, ZHU Z R, YANG T H, et al. The effect of incident angle on the rebound behavior of micro-particle impacts[J]. Journal of Aerosol Science, 2021, 155: 105778. |
[1] | XU Jiaheng, LI Yongsheng, LUO Chunhuan, SU Qingquan. Optimization of methanol steam reforming process [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 41-46. |
[2] | YUE Zihan, LONG Zhen, ZHOU Xuebing, ZANG Xiaoya, LIANG Deqing. State of the art on hydrogen storage of sⅡ clathrate hydrate [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5121-5134. |
[3] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[4] | LIU Muzi, SHI Keke, ZHAO Qiang, LI Jinping, LIU Guang. Research progress of solid hydrogen storage materials [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4746-4769. |
[5] | GUO Jin, ZHANG Geng, CHEN Guohua, ZHU Ming, TAN Yue, LI Wei, XIA Li, HU Kun. Research progress on vehicle liquid hydrogen cylinder design [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4221-4229. |
[6] | SUN Xudong, ZHAO Yuying, LI Shirui, WANG Qi, LI Xiaojian, ZHANG Bo. Textual quantitative analysis on China’s local hydrogen energy development policies [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3478-3488. |
[7] | MA Zhejie, ZHANG Wenli, ZHAO Xuankai, LI Ping. Progress on the influence of oxygen mass transfer resistance in PEMFC cathode catalyst layer [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2860-2873. |
[8] | SUN Xiao, ZHU Guangtao, PEI Aiguo. Industrialization and research progress of hydrogen liquefier [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1103-1117. |
[9] | YU Haiqiang, GUO Quanzhong, DU Keqin, WANG Chuan. Application of pulse electrodeposition PbO2 coating on stainless steel bipolar plate of PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 917-924. |
[10] | ZHANG Zhenyang, MIAO Cong, WANG Feng, LAN Yuqi, AN Gang, YANG Shenyin. Analysis of present status and future technical route on large-scale hydrogen liquefaction plant [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6261-6274. |
[11] | SHI Wenbo, TSAI Chunming, LI Dewei, ONO Kei, ZHANG Jianbo. ISO/IEC, American, Japanese and Chinese hydrogen technical standardization system: comparison and suggestions [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6275-6284. |
[12] | LI Zhenghan, TU Zhengkai. Research progress of simulation models of proton exchange membrane fuel cell [J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5272-5296. |
[13] | HAN Li, LI Qi, LENG Guoyun, WEI Wenzhen, LI Yuying, WU Yuting. Latest research progress of hydrogen energy storage technology [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 108-117. |
[14] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[15] | HU Bing, XU Lijun, HE Shan, SU Xin, WANG Jiwei. Researching progress of hydrogen production by PEM water electrolysis under the goal of carbon peak and carbon neutrality [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4595-4604. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |