Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S2): 149-155.DOI: 10.16085/j.issn.1000-6613.2021-0638
• Energy processes and technology • Previous Articles Next Articles
Received:
2021-03-29
Revised:
2021-04-21
Online:
2021-11-12
Published:
2021-11-12
作者简介:
王建勋(1983—),男,硕士,高级工程师,研究方向为火电机组故障诊断、性能试验分析、优化运行和节能减排技术等。E-mail:CLC Number:
WANG Jianxun. Comprehensive analysis of cascade heating technology based on waste heat of thermal power units[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 149-155.
王建勋. 火电机组余热梯级供热技术的综合分析[J]. 化工进展, 2021, 40(S2): 149-155.
项目 | 额定工况 |
---|---|
主蒸汽流量/t·h-1 | 993.6 |
运行背压/MPa | 0.0047 |
采暖汽源 | 中排 |
汽源压力/MW | 0.547 |
汽源温度/℃ | 292.7 |
单机供热负荷/MW | 197.10 |
总供热负荷/MW | 788.4 |
单机发电负荷/MW | 295.58 |
总发电负荷/MW | 1182.32 |
发电热耗率/kJ·(kW·h)-1 | 6654.79 |
发电煤耗率/g·(kW·h)-1 | 249.69 |
项目 | 额定工况 |
---|---|
主蒸汽流量/t·h-1 | 993.6 |
运行背压/MPa | 0.0047 |
采暖汽源 | 中排 |
汽源压力/MW | 0.547 |
汽源温度/℃ | 292.7 |
单机供热负荷/MW | 197.10 |
总供热负荷/MW | 788.4 |
单机发电负荷/MW | 295.58 |
总发电负荷/MW | 1182.32 |
发电热耗率/kJ·(kW·h)-1 | 6654.79 |
发电煤耗率/g·(kW·h)-1 | 249.69 |
项目 | 机组 | |||
---|---|---|---|---|
1号 | 2号 | 3号 | 4号 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 | 993.6 | 993.6 |
运行背压/MPa | 0.022 | 0.035 | 0.054 | 0.0047 |
采暖汽源 | 乏汽 | 乏汽 | 乏汽 | 中排 |
汽源压力/MW | 0.022 | 0.035 | 0.054 | 0.547 |
汽源温度/℃ | 62.1 | 72.7 | 83.2 | 292.7 |
单机供热负荷/MW | 415.3 | 426.5 | 437.9 | 394.2 |
总供热负荷/MW | 1673.9 | |||
单机发电负荷/MW | 322.1 | 311.2 | 300.0 | 243.1 |
总发电负荷/MW | 1176.4 | |||
发电热耗率/kJ·(kW·h)-1 | 3669.7 | 3669.8 | 3668.4 | 5171.8 |
发电煤耗率/g·(kW·h)-1 | 137.7 | 137.6 | 137.6 | 197.1 |
平均发电煤耗率/g·(kW·h)-1 | 149.9 |
项目 | 机组 | |||
---|---|---|---|---|
1号 | 2号 | 3号 | 4号 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 | 993.6 | 993.6 |
运行背压/MPa | 0.022 | 0.035 | 0.054 | 0.0047 |
采暖汽源 | 乏汽 | 乏汽 | 乏汽 | 中排 |
汽源压力/MW | 0.022 | 0.035 | 0.054 | 0.547 |
汽源温度/℃ | 62.1 | 72.7 | 83.2 | 292.7 |
单机供热负荷/MW | 415.3 | 426.5 | 437.9 | 394.2 |
总供热负荷/MW | 1673.9 | |||
单机发电负荷/MW | 322.1 | 311.2 | 300.0 | 243.1 |
总发电负荷/MW | 1176.4 | |||
发电热耗率/kJ·(kW·h)-1 | 3669.7 | 3669.8 | 3668.4 | 5171.8 |
发电煤耗率/g·(kW·h)-1 | 137.7 | 137.6 | 137.6 | 197.1 |
平均发电煤耗率/g·(kW·h)-1 | 149.9 |
项目 | 供热期 | |
---|---|---|
严寒期 | 非严寒期 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 |
运行背压/MPa | 0.0047 | 0.0047 |
采暖汽源 | 中排 | 中排 |
汽源压力/MW | 0.547 | 0.547 |
汽源温度/℃ | 292.7 | 292.7 |
循环水回水温度/℃ | 50 | 50 |
供水温度/℃ | 91.2 | 81.2 |
加热器蒸汽侧定性温度/℃ | 166.1 | 166.1 |
加热器循环水侧定性温度/℃ | 70.2 | 65.4 |
传热温差/℃ | 95.9 | 100.8 |
加热器蒸汽入口比?/kJ·kg-1 | 796.5 | 796.5 |
加热器疏水出口比?/kJ·kg-1 | 5.42 | 5.42 |
加热器热网循环水入口比?/kJ·kg-1 | 2.51 | 2.51 |
加热器热网循环水出口比?/kJ·kg-1 | 21.42 | 15.18 |
加热器换热?效率/% | 38.78 | 34.31 |
项目 | 供热期 | |
---|---|---|
严寒期 | 非严寒期 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 |
运行背压/MPa | 0.0047 | 0.0047 |
采暖汽源 | 中排 | 中排 |
汽源压力/MW | 0.547 | 0.547 |
汽源温度/℃ | 292.7 | 292.7 |
循环水回水温度/℃ | 50 | 50 |
供水温度/℃ | 91.2 | 81.2 |
加热器蒸汽侧定性温度/℃ | 166.1 | 166.1 |
加热器循环水侧定性温度/℃ | 70.2 | 65.4 |
传热温差/℃ | 95.9 | 100.8 |
加热器蒸汽入口比?/kJ·kg-1 | 796.5 | 796.5 |
加热器疏水出口比?/kJ·kg-1 | 5.42 | 5.42 |
加热器热网循环水入口比?/kJ·kg-1 | 2.51 | 2.51 |
加热器热网循环水出口比?/kJ·kg-1 | 21.42 | 15.18 |
加热器换热?效率/% | 38.78 | 34.31 |
项目 | 机组 | |||
---|---|---|---|---|
1号 | 2号 | 3号 | 4号 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 | 993.6 | 993.6 |
运行背压/MPa | 0.022 | 0.035 | 0.054 | 0.0047 |
采暖汽源 | 乏汽 | 乏汽 | 乏汽 | 中排 |
汽源压力/MW | 0.022 | 0.035 | 0.054 | 0.547 |
汽源温度/℃ | 62.1 | 72.7 | 83.2 | 292.7 |
汽源的平均温度/℃ | 124.7 | |||
循环水回水温度/℃ | 50 | |||
严寒期供水温度/℃ | 60.1 | 70.7 | 81.2 | 91.2 |
非严寒期供水温度/℃ | 60.1 | 70.7 | 81.2 | — |
加热器蒸汽入口比?/kJ·kg-1 | 203.3 | 272.1 | 339.4 | 796.5 |
非严寒期加热器蒸汽入口平均比?/kJ·kg-1 | 271.77 | |||
严寒期加热器蒸汽入口平均比?/kJ·kg-1 | 378.3 | |||
加热器疏水出口比?/kJ·kg-1 | 4.88 | 4.90 | 4.92 | 5.42 |
加热器循环水入口比?/kJ·kg-1 | 2.51 | 5.39 | 9.67 | 15.27 |
加热器循环水出口比?/kJ·kg-1 | 5.39 | 9.67 | 15.27 | 21.42 |
加热器?损/kW | 8229.4 | 8112 | 7325.3 | 52762 |
加热器总?损/kW | 76428.8 | |||
加热器换热的?效率/% | 83.99 | 83.67 | 88.16 | 52.78 |
非严寒期平均?效率/% | 85.66 | |||
严寒期平均?效率/% | 71.36 | |||
附加燃料单耗/g·(kW·h)-1 | 3.14 | 3.20 | 3.00 | 21.93 |
非严寒期平均附加燃料单耗/g·(kW·h)-1 | 3.11 | |||
严寒期平均附加燃料单耗/g·(kW·h)-1 | 7.98 |
项目 | 机组 | |||
---|---|---|---|---|
1号 | 2号 | 3号 | 4号 | |
主蒸汽流量/t·h-1 | 993.6 | 993.6 | 993.6 | 993.6 |
运行背压/MPa | 0.022 | 0.035 | 0.054 | 0.0047 |
采暖汽源 | 乏汽 | 乏汽 | 乏汽 | 中排 |
汽源压力/MW | 0.022 | 0.035 | 0.054 | 0.547 |
汽源温度/℃ | 62.1 | 72.7 | 83.2 | 292.7 |
汽源的平均温度/℃ | 124.7 | |||
循环水回水温度/℃ | 50 | |||
严寒期供水温度/℃ | 60.1 | 70.7 | 81.2 | 91.2 |
非严寒期供水温度/℃ | 60.1 | 70.7 | 81.2 | — |
加热器蒸汽入口比?/kJ·kg-1 | 203.3 | 272.1 | 339.4 | 796.5 |
非严寒期加热器蒸汽入口平均比?/kJ·kg-1 | 271.77 | |||
严寒期加热器蒸汽入口平均比?/kJ·kg-1 | 378.3 | |||
加热器疏水出口比?/kJ·kg-1 | 4.88 | 4.90 | 4.92 | 5.42 |
加热器循环水入口比?/kJ·kg-1 | 2.51 | 5.39 | 9.67 | 15.27 |
加热器循环水出口比?/kJ·kg-1 | 5.39 | 9.67 | 15.27 | 21.42 |
加热器?损/kW | 8229.4 | 8112 | 7325.3 | 52762 |
加热器总?损/kW | 76428.8 | |||
加热器换热的?效率/% | 83.99 | 83.67 | 88.16 | 52.78 |
非严寒期平均?效率/% | 85.66 | |||
严寒期平均?效率/% | 71.36 | |||
附加燃料单耗/g·(kW·h)-1 | 3.14 | 3.20 | 3.00 | 21.93 |
非严寒期平均附加燃料单耗/g·(kW·h)-1 | 3.11 | |||
严寒期平均附加燃料单耗/g·(kW·h)-1 | 7.98 |
7 | WANG Jinquan,LI Jun,Hongkai LYU,et al. Optimization tests on main steam pressure for 600MW air-cooling heat supply units[J]. Electric Power,2014,47(4):48-51,69. |
8 | 戈志华,孙诗梦,万 燕,等. 大型汽轮机组高背压供热改造适用性分析[J]. 中国电机工程学报,2017,37(11):3216-3222. |
GE Zhihua,SUN Shimeng,WAN Yan,et al. Applicability analysis of high back-pressure heating retrofit for large-scale steam turbine unit[J]. Proceedings of the CSEE,2017,37(11):3216-3222. | |
9 | 王学栋,王德华,郑威,等. 150MW机组高背压供热改造的试验研究与分析[J]. 汽轮机技术, 2012, 54(5):397-400. |
WANG Xuedong,WANG Dehua,ZHENG Wei,et al. Experimental investigation and analysis on reconstruction of hing back pressure circulating water heat supply of 150MW unit[J]. Turbine Technology,2012,54(5):397-400. | |
10 | 王凤良. 高背压供热改造关键技术及经济性评价探讨[J]. 汽轮机技术,2016,58(2):133-135. |
WANG Fengliang. The key technology and economic research for high-back pressure heat-supply transformation[J]. Turbine Technology,2016,58(2):133-135. | |
11 | 肖慧杰,张雪松. 汽轮机高背压供热方案探讨[J]. 电力勘测设计,2017, 58(3): 35-39. |
XIAO Huijie,ZHANG Xuesong,et al.Discussion on heat supply scheme of high back-pressure steam turbine[J]. Electric Power Survey & Design,2017, 58(3):35-39. | |
12 | 王力,陈永辉,李波,等. 300MW机组高背压供热改造方案及试验分析[J]. 汽轮机技术,2018,60(5):385-388. |
WANG Li,CHEN Yongbui,LI Bo,et al. Reconstruction scheme and test analysis for heating supply with high back pressure of a 300MW unit[J]. Turbine Technology,2018,60(5):385-388. | |
13 | 余耀. 空冷机组高背压供热与抽汽供热的热经济性比较[J]. 中国电力,2016,49(9):104-108,113. |
YU Yao. Thermal economics comparison between high back pressure heating and extraction heating for a direct air-cooled power unit[J]. Electric Power,2016,49(9):104-108,113. | |
14 | 梁占伟,杨承刚,张磊,等. 基于单耗理论的抽汽耦合高背压供热优化[J]. 中国电力,2019,52(12):171-178. |
1 | 林振娴,杨勇平,何坚忍,等. 供热系统串联布置方式的应用[J]. 中国电机工程学报,2010,30(35):13-17. |
LIN Zhenxian,YANG Yongping,HE Jianren,et al.Applied research on the serial distribution mode of heating system[J]. Proceedings of the CSEE,2010,30(35):13-17. | |
14 | LIANG Zhanwei,YANG Chenggang,ZHANG Lei,et al. Optimization of steam extraction combined high back pressure heating based on specific consumption theory[J]. Electric Power,2019,52(12):171-178. |
15 | 徐则林,姜燕妮,徐磊,等. 热电联产机组热能深度梯级利用的研究[J]. 华北电力大学学报(自然科学版),2014,41(5):107-112. |
2 | 杨勇平,林振娴,何坚忍. 热电联产系统中最佳冷源热网加热器的选择方法[J]. 中国电机工程学报,2010,30(26):1-5. |
YANG Yongping,LIN Zhenxian,HE Jianren.Chosen method of optimum cold source thermal-system heater in heat and power cogeneration system[J]. Proceedings of the CSEE,2010,30(26):1-5. | |
3 | 许红胜,张俊礼,葛斌. 基于产出距离函数的热电产品成本分配[J]. 中国电机工程学报,2010,30(26):7-11. |
XU Hongsheng,ZHANG Junli,GE Bin. Cost allocation of cogeneration products bases on output distance function[J]. Proceedings of the CSEE,2010,30(26):7-11. | |
4 | 程钧培.节能减排与火电新技术[J]. 动力工程,2009,29(1):1-4. |
CHENG Junpei. Energy saving,emission reducing and new technologies for thermal power generation[J]. Journal of Power Engineering,2009,29(1):1-4. | |
5 | 张学镭,陈海平. 回收循环水余热的热泵供热系统热力性能分析[J].中国电机工程学报,2013,33(8):1-8. |
ZHANG Xuelei,CHEN Haiping. Thermodynamic analysis of heat pump heating supply systems with circulating water heat recovery[J]. Proceedings of the CSEE,2013,33(8):1-8. | |
15 | XU Zelin,JIANG Yanni,XU Lei,et al. Research on thermal energy step utilization in cogeneration units[J]. Journal of North China Electric Power University (Natural Scinece Edition),2014,41(5):107-112. |
16 | 陈海平,王忠平,石志云,等. 基于单耗理论分析回热系统热经济性[J]. 汽轮机技术,2012,54(6):448-540. |
6 | 王晋权,蔡新春,张国胜. 直接空冷热电联产机组供热优化分析[J]. 中国电力,2015,48(3):17-20. |
WANG Jinquan,CAI Xinchun,ZHANG Guosheng.Optimal analysis on heat supply of combined heat and power direct air-cooling units[J]. Electric Power,2015,48(3):17-20. | |
7 | 王晋权,李俊,吕宏凯,等. 600MW空冷供热机组主蒸汽压力寻优试验[J]. 中国电力,2014,47(4):48-51,69. |
16 | CHEN Haiping,WANG Zhongping,SHI Zhiyuni,et al. Exergy analysis of thermal economic efficiency for regenerative system based on consumption rate anlysis[J]. Turbine Technology,2012,54(6):448-540. |
17 | 宋之平. 单耗分析的理论和实施[J].中国电机工程学报,1992,12(4):15-21. |
SONG Zhiping. Theory and application of fuel specific consumption[J]. Proceedings of the CSEE,1992,12(4):15-21. | |
18 | 宋之平,李洪涛. 单耗分析案例[J]. 工程热物理学报,1996,17(4):397-399. |
SONG Zhiping, LI Hongtao. Application of fuel specific consumption analysis[J]. Journal of Engineering Thermodynamics,1996,17(4):397-399. | |
19 | 宋之平.供热系统“单耗分析”模型[J]. 热能动力工程,1996,11(5):305-310. |
SONG Zhiping. Model of “fuel specific consumption”of heating system[J]. Journal of Engineering for Thermal Energy and Power,1996,11(5):305-310. | |
20 | 王利刚,杨勇平,董长青,等. 单耗分析理论的改进与初步应用[J].中国电机工程学报,2012,32(11):16-21. |
WANG Ligang,YANG Yongping,DONG Changqing,et al. Improvement and application of theory of fuel specific consumption[J].Proceedings of the CSEE,2012,32(11):16-21. |
[1] | HOU Dianbao, HE Maoyong, CHEN Yugang, YANG Haiyun, LI Haimin. Application analysis of resource allocation optimization and circular economy in development and utilization of potassium resources [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3197-3208. |
[2] | JIANG Hua, ZHANG Zihui, GONG Wuqi, CHANG Yueyong. Design and performance analysis of mechanical vapor recompression salt fractionation evaporation crystallization system [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3947-3956. |
[3] | MA Youfu, WANG Ziwen, LYU Junfu. Simulation of off-design performance of an efficient power generation system with cold-ends optimization using hot air recirculation [J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2340-2347. |
[4] | RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516. |
[5] | WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502. |
[6] | YIN Jiming, DONG Fenglian, YANG Lei, LIU Pengfei, WANG Nan. Lean benefit calculation model for production and operation of crude oil industry chain [J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 156-161. |
[7] | LIU Xuetao, LI Minxia, MA Yitai, YAO Liang, ZHAN Haomiao. Comparative analysis of energy efficiency and economy of CO2 transcritical heat pump system under heating condition [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1315-1324. |
[8] | ZHANG Yimeng, MA Huanhuan, CHEN Dengyu, ZHOU Jianbin. Application case analysis of 3MW apricot shell gasification power generation co-production of activated carbon, heat and fertilizer [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1667-1674. |
[9] | CAO Xuewen, YANG Jian, BIAN Jiang, LIU Yang, GUO Dan, LI Qigui. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669. |
[10] | LIU Guanglin, XU Jinliang, MIAO Zheng. Exergy analysis of two stage organic Rankine cycle generation power system with co-condenser [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6656-6662. |
[11] | XU Wanyi, WANG Hongxia, CUI Xiaomi, ZHANG Zaoxiao. Research progress on cleaner production and engineering of calcium carbide preparation [J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5337-5347. |
[12] | Zijian WANG. Optimization of heat extraction in the middle section of atmospheric and vacuum plant based on profit accounting [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 73-77. |
[13] | Jianxun WANG. Analysis on influence of variation of operating back pressure on safety and economy of zero output technology of low-pressure cylinder [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 85-89. |
[14] | Hengyu YIN,Junjie FAN,Jiaxiao DENG,Meifang DU,Shixuan CHEN. Analysis and optimization of waste heat recovery system in coke oven [J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1181-1186. |
[15] | Gesheng HUANG, Jie HU, Jinshan LI, Xiaoyu SHI, Wenjuan DING, Xiaoyang ZHOU. Development status and trend of coal-to-olefins technology [J]. Chemical Industry and Engineering Progress, 2020, 39(10): 3966-3974. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 455
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 242
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |