Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (S1): 81-87.DOI: 10.16085/j.issn.1000-6613.2020-2189
• Energy processes and technology • Previous Articles Next Articles
ZHANG Wenhui(), HUA Rui, QI Suitao(
)
Received:
2020-11-03
Revised:
2021-01-04
Online:
2021-11-09
Published:
2021-10-25
Contact:
QI Suitao
通讯作者:
齐随涛
作者简介:
张雯惠(1997—),女,硕士研究生,研究方向为多相催化。E-mail:基金资助:
CLC Number:
ZHANG Wenhui, HUA Rui, QI Suitao. Research progress of low temperature Fischer-Tropsch synthetic wax oil hydrocracking refining technology[J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 81-87.
张雯惠, 华睿, 齐随涛. 低温费托合成蜡油加氢裂化精制技术的研究进展[J]. 化工进展, 2021, 40(S1): 81-87.
类型 | β位裂化 | 类型 | 异构化 |
---|---|---|---|
A | ![]() | A | ![]() |
B1 | ![]() | ||
B2 | ![]() | B | ![]() |
C | ![]() | ||
D | ![]() |
类型 | β位裂化 | 类型 | 异构化 |
---|---|---|---|
A | ![]() | A | ![]() |
B1 | ![]() | ||
B2 | ![]() | B | ![]() |
C | ![]() | ||
D | ![]() |
1 | ZHENG Q, BROWN J L, MANTLE M D, et al. Water-wax behaviour in porous silica at low temperature Fischer-Tropsch conditions[J]. Applied Catalysis A: General, 2019, 572(1): 142-150. |
2 | SANTOS R G D, ALENCAR A C. Biomass-derived syngas production via gasification process and its catalytic conversion into fuels by Fischer Tropsch synthesis: a review[J]. International Journal of Hydrogen Energy, 2020, 45(36): 18114-18132. |
3 | FILIP L, ZÁMOSTNÝ P, RAUCH R. Mathematical model of Fischer-Tropsch synthesis using variable alpha-parameter to predict product distribution[J]. Fuel, 2019, 243(1): 603-609. |
4 | MÉNDEZ C I, ANCHEYTA J. Kinetic models for Fischer-Tropsch synthesis for the production of clean fuels[J]. Catalysis Today, 2020,353(1): 3-16. |
5 | 袁华, 袁炜, 罗春桃. 低温费托合成重质油加工利用[J]. 合成材料老化与应用, 2018, 47(1): 124-129. |
YUAN H, YUAN W, LUO C T. The processing and utilization of low-temperature Fischer-Tropsch heavy syncrude oil[J]. Synthetic Materials Aging and Application, 2018, 47(1): 124-129. | |
6 | HUANG Y, CHU Q, YI Q, et al. Process systems engineering of high-low temperature Fischer-Tropsch synthesis integration in olefin production[J]. Energy Procedia, 2017, 142(1): 3049-3054. |
7 | BECKER P J, SERRAND N, CELSE B, et al. A single events microkinetic model for hydrocracking of vacuum gas oil[J]. Computers & Chemical Engineering, 2017, 98(1): 70-79. |
8 | 段世生. 加氢裂化技术的新进展[J]. 中文信息, 2015,60(10): 247-249. |
DUAN S S. New progress in hydrocracking technology[J]. Chinese Information, 2015, 60(10): 247-249. | |
9 | ZHANG S, LIU D, DENG W, et al. A review of slurry-phase hydrocracking heavy oil technology[J]. Energy & Fuels, 2007, 21(6): 3057-3062. |
10 | LECKEL D. Hydrocracking of iron-catalyzed Fischer-Tropsch waxes[J]. Energy & Fuels, 2005, 19(5): 1795-1803. |
11 | LECKEL D. Low-pressure hydrocracking of coal-derived Fischer-Tropsch waxes to diesel[J]. Energy & Fuels, 2007, 21(3): 1425-1431. |
12 | CALEMMA V, PERATELLO S, PEREGO C. Hydroisomerization and hydrocracking of long chain n-alkanes on Pt/amorphous SiO2-Al2O3 catalyst[J]. Applied Catalysis A: General, 2000, 190(1): 207-218. |
13 | CHANG J, FAN L, FUJIMOTO K. Enhancement effect of free radical initiator on hydro-thermal cracking of heavy oil and model compound[J]. Energy & Fuels, 1999, 13(5): 1107-1108. |
14 | WEITKAMP J. Catalytic hydrocracking-mechanisms and versatility of the process[J]. ChemCatChem, 2012, 4(3): 292-306. |
15 | MITSIOS M, GUILLAUME D, GALTIER P, et al. Single-event microkinetic model for long-chain paraffin hydrocracking and hydroisomerization on an amorphous Pt/SiO2·Al2O3 atalyst[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3284-3292. |
16 | BOUCHY C, HASTOY G, GUILLON E, et al. Fischer-Tropsch waxes upgrading via hydrocracking and selective hydroisomerization[J]. Oil & Gas Science and Technology—Revue d’IFP Energies Nouvelles, 2009, 64(1): 91-112. |
17 | CLAUDE M C, MARTENS J A. Monomethyl-branching of long n-alkanes in the range from decane to tetracosane on Pt/H-ZSM-22 bifunctional catalyst[J]. Journal of Catalysis, 2000, 190(1): 39-48. |
18 | NOH G, ZONES S I, IGLESIA E. Isomer sieving and the selective formation of terminal methyl isomers in reactions of linear alkanes on one-dimensional zeolites[J]. Journal of Catalysis, 2019, 377(1): 255-270. |
19 | MENDES P S F, SILVA J M, RIBEIRO M F, et al. Quantification of the available acid sites in the hydrocracking of nitrogen-containing feedstocks over USY shaped NiMo-catalysts[J]. Journal of Industrial and Engineering Chemistry, 2019, 71(1): 167-176. |
20 | SAAB R, POLYCHRONOPOULOU K, ZHENG L, et al. Synthesis and performance evaluation of hydrocracking catalysts: a review[J]. Journal of Industrial and Engineering Chemistry, 2020, 89(1): 83-103. |
21 | TOMASEK S, LONYI F, VALYON J, et al. Hydrocracking of Fischer-Tropsch paraffin mixtures over strong acid bifunctional catalysts to engine fuels[J]. ACS Omega, 2020, 5(41): 26413-26420. |
22 | SÁNCHEZ J, MORENO A, MONDRAGÓN F, et al. Bifunctional MoS2-silica-alumina catalysts for slurry phase phenanthrene-decalin hydroconversion[J]. Energy & Fuels, 2018, 32(10): 10910-10922. |
23 | AL-ATTAS T A, ALI S A, ZAHIR M H, et al. Recent advances in heavy oil upgrading using dispersed catalysts[J]. Energy & Fuels, 2019, 33(9): 7917-7949. |
24 | MAMPURU M B, NKAZI D B, MUKAYA H E. Hydrocracking of waste cooking oil into biogasoline in the presence of a bi-functional Ni-Mo/alumina catalyst[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020, 42(20): 2564-2575. |
25 | 杨涛, 黄传峰, 邓文安. 油溶性催化剂在渣油悬浮床加氢反应中的加氢抑焦作用[J]. 石油炼制与化工, 2016, 47(5): 51-56. |
YANG T, HUANG C F, DENG W A. Hydrogenation and coke suppression effect of oil-soluble catalyst in residual oil suspension bed hydrogenation [J]. Petroleum Processing and Petrochemicals, 2016, 47(5): 51-56. | |
26 | LI C, LI J, YANG T, et al. Formation of Ni-MoS3 hollow material with enhanced activity in alurry-phase hydrogenation of heavy oil[J]. Energy & Fuels, 2019, 33(11): 10933-10940. |
27 | SÁNCHEZ J, TALLAFIGO M F, GILARRANZ M A, et al. Refining heavy neutral oil paraffin by catalytic hydrotreatment over Ni-W/Al2O3 catalysts[J]. Energy & Fuels, 2006, 20(1): 245-249. |
28 | ANILKUMAR M, LOKE N, PATIL V, et al. Hydrocracking of hydrotreated light cycle oil to mono aromatics over non-noble bi-functional (Ni-W supported) zeolite catalysts[J]. Catalysis Today, 2019, 12(1): 27. |
29 | NGUYEN M, PIRNGRUBER G D, ALBRIEUX F, et al. How does an acidic support affect the hydrotreatment of a gas oil with high nitrogen content[J]. Energy & Fuels, 2019, 33(2): 1467-1472. |
30 | 方向晨, 杨占林, 王继锋, 等. 油品精制催化剂技术进展[J]. 化工进展, 2016, 35(6): 1748-1757. |
FANG X C, YANG Z L, WANG J F, et al. Technology progress on oil hydrofining catalysts[J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1748-1757. | |
31 | BAI P, XIE M, ETIM U J, et al. Zeolite Y mother liquor modified γ-Al2O3 with enhanced Brönsted acidity as active matrix to improve the performance of fluid catalytic cracking catalyst[J]. Industrial & Engineering Chemistry Research, 2018, 57(5): 1389-1398. |
32 | 于婷婷. 劣质蜡油加氢处理催化剂载体的制备[D]. 北京: 中国石油大学(北京), 2018. |
YU T T. Preparation of inferior wax oil hydrogenation catalyst carrier[D]. Beijing: China University of Petroleum(Beijing), 2018. | |
33 | 曲元瑗, 罗学刚. 新型催化剂V2O5/ZSM-5用于液体石蜡催化氧化合成脂肪酸[J]. 化工进展, 2017, 36(6): 2137-2142. |
QU Y Y, LUO X G. Studies on a novel V2O5/ZSM-5 catalyst for catalytic oxidation of liquid paraffin to fatty acid[J]. Chemical Industry and Engineering Progress, 2017, 36(6): 2137-2142. | |
34 | GUSEV A A, PSARRAS A C, TRIANTAFYLLIDIS K S, et al. ZSM-5 additive deactivation with nickel and vanadium metals in the fluid catalytic cracking (FCC) process[J]. Industrial & Engineering Chemistry Research, 2019, 59(6): 2631-2641. |
35 | 任飞, 邓景辉, 沙昊, 等. 加氢轻循环油裂化反应规律研究[J]. 石油炼制与化工, 2016, 47(10): 38-44. |
REN F, DENG J H, SHA H, et al. Study on catalytic cracking of hydrotreated LCO[J]. Petroleum Processing and Petrochemicals, 2016, 47(10): 38-44. | |
36 | 尹延超, 王晓峰, 王更更, 等. 均匀包覆的微-介孔复合材料Y/ASA的合成及其加氢裂化性能[J]. 石油化工, 2016, 45(8): 925-931. |
YIN Y C, WANG X F, WANG G G, et al. Synthesis of uniform covering micro-and mesoporous composite materials Y/ASA and its hydrocracking performance[J]. Petrochemical Technology, 2016, 45(8): 925-931. | |
37 | SHIMURA K, MIYAZAWA T, HANAOKA T, et al. Fischer-Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition[J]. Applied Catalysis A: General, 2015, 494(1): 1-11. |
38 | BUDUKVA S V, KLIMOV O V, UVARKINA D D, et al. Effect of citric acid and triethylene glycol addition on the reactivation of CoMo/γ-Al2O3 hydrotreating catalysts[J]. Catalysis Today, 2019, 329(1): 35-43. |
39 | ELLER Z, VARGA Z, HANCSÓK J. Renewable jet fuel from Kerosene/Coconut oil mixtures with catalytic hydrogenation[J]. Energy & Fuels, 2019, 33(7): 6444-6453. |
40 | 杨雪, 高凯丽, 徐新, 等. 负载型骨架镍催化剂催化轻质石脑油加氢脱苯[J]. 工业催化, 2017, 25(4): 63-67. |
YANG X, GAO K L, XU X, et al. Hydrogenation light naphtha for removal of benzene over supported Raney nickel catalyst[J]. Industrial Catalysis, 2017, 25(4): 63-67. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | LI Ning, LI Jinke, DONG Jinshan. Research and development of porous medium burner in ethylene cracking furnace [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 73-83. |
[8] | XU Youhao, WANG Wei, LU Bona, XU Hui, HE Mingyuan. China’s oil refining innovation: MIP development strategy and enlightenment [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4465-4470. |
[9] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[10] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[11] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[12] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[13] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[14] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[15] | MAO Shanjun, WANG Zhe, WANG Yong. Group recognition hydrogenation: From concept to application [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3917-3922. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 1004
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 360
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |