Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5590-5599.DOI: 10.16085/j.issn.1000-6613.2020-2143
• Materials science and technology • Previous Articles Next Articles
Received:
2020-10-26
Revised:
2021-01-12
Online:
2021-10-25
Published:
2021-10-10
作者简介:
赵东升(1984—),男,博士,讲师,研究方向为膜法水处理技术。E-mail:基金资助:
CLC Number:
ZHAO Dongsheng. Research progress in molybdenum disulfide nanosheet-based NF/RO membranes for water treatment[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5590-5599.
赵东升. 二硫化钼纳米片基水处理纳滤/反渗透膜研究进展[J]. 化工进展, 2021, 40(10): 5590-5599.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2143
1 | WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5): 16018. |
2 | SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades[J]. Nature, 2008, 452(7185): 301-310. |
3 | PENDERGAST M M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4(6): 1946-1971. |
4 | NAIR R R, WU H A, JAYARAM P N, et al. Unimpeded permeation of water through helium-leak-tight graphene-based membranes[J]. Science, 2012, 335(6067): 442-444. |
5 | HAN Y, XU Z, GAO C. Ultrathin graphene nanofiltration membrane for water purification[J]. Advanced Functional Materials, 2013, 23(29): 3693-3700. |
6 | ANAND A, UNNIKRISHNAN B, MAO J Y, et al. Graphene-based nanofiltration membranes for improving salt rejection, water flux and antifouling—A review[J]. Desalination, 2018, 429: 119-133. |
7 | YUAN Y, GAO X, WEI Y, et al. Enhanced desalination performance of carboxyl functionalized graphene oxide nanofiltration membranes[J]. Desalination, 2017, 405: 29-39. |
8 | ZHENG S, TU Q, URBAN J J, et al. Swelling of graphene oxide membranes in aqueous solution: characterization of interlayer spacing and insight into water transport mechanisms[J]. ACS Nano, 2017, 11(6): 6440-6450. |
9 | ZHANG C J, PINILLA S, MCEVOY N, et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes)[J]. Chemistry of Materials, 2017, 29(11): 4848-4856. |
10 | MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials, 2017, 29(4): 1632-1640. |
11 | WANG Y, LI L, WEI Y, et al. Water transport with ultralow friction through partially exfoliated g-C3N4 nanosheet membranes with self-supporting spacers[J]. Angewandte Chemie International Edition, 2017, 56(31): 8974-8980. |
12 | ZHOU J, QIN Z, LU Y, et al. MoS2/polyelectrolytes hybrid nanofiltration (NF) membranes with enhanced permselectivity[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 84: 196-202. |
13 | LI W, YANG Y, WEBER J K, et al. Tunable, strain-controlled nanoporous MoS2 filter for water desalination[J]. ACS Nano, 2016, 10(2): 1829-1835. |
14 | WANG Z, MI B. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheets[J]. Environmental Science & Technology, 2017, 51(15): 8229-8244. |
15 | SUN L, HUANG H, PENG X. Laminar MoS2 membranes for molecule separation[J]. Chemical Communications, 2013, 49(91): 10718-10720. |
16 | WANG Z, TU Q, ZHENG S, et al. Understanding the aqueous stability and filtration capability of MoS2 membranes[J]. Nano Letters, 2017, 17(12): 7289-7298. |
17 | DENG M, KWAC K, LI M, et al. Stability, molecular sieving, and ion diffusion selectivity of a lamellar membrane from two-dimensional molybdenum disulfide[J]. Nano Letters, 2017, 17(4): 2342-2348. |
18 | AI K, RUAN C, SHEN M, et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems[J]. Advanced Functional Materials, 2016, 26(30): 5542-5549. |
19 | RADISAVLJEVIC B, RADENOVIC A, BRIVIO J, et al. Single-layer MoS2 transistors[J]. Nature Nanotechnology, 2011, 6(3): 147-150. |
20 | COLEMAN J N, LOTYA M, O'NEILL A, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials[J]. Science, 2011, 331(6017): 568-571. |
21 | EDA G, YAMAGUCHI H, VOIRY D, et al. Photoluminescence from chemically exfoliated MoS2[J]. Nano Letters, 2011, 11(12): 5111-5116. |
22 | FAN X, XU P, ZHOU D, et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion[J]. Nano Letters, 2015, 15(9): 5956-5960. |
23 | TAN C, LUO Z, CHATURVEDI A, et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(9): 1705509. |
24 | CHHOWALLA M, SHIN H S, EDA G, et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets[J]. Nature Chemistry, 2013, 5(4): 263-275. |
25 | CHOU S S, DE M, KIM J, et al. Ligand conjugation of chemically exfoliated MoS2[J]. Journal of the American Chemical Society, 2013, 135(12): 4584-4587. |
26 | VOIRY D, GOSWAMI A, KAPPERA R, et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering[J]. Nature Chemistry, 2015, 7(1): 45-49. |
27 | HIRUNPINYOPAS W, PRESTAT E, WORRALL S D, et al. Desalination and nanofiltration through functionalized laminar MoS2 membranes[J]. ACS Nano, 2017, 11(11): 11082-11090. |
28 | RIES L, PETIT E, MICHEL T, et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization[J]. Nature Materials, 2019, 18(10): 1112-1117. |
29 | HU W, CUI X, XIANG L, et al. Tannic acid modified MoS2 nanosheet membranes with superior water flux and ion/dye rejection[J]. Journal of Colloid and Interface Science, 2020, 560: 177-185. |
30 | MA M Q, ZHANG C, ZHU C Y, et al. Nanocomposite membranes embedded with functionalized MoS2 nanosheets for enhanced interfacial compatibility and nanofiltration performance[J]. Journal of Membrane Science, 2019, 591: 117316. |
31 | ZHANG H, GONG X Y, LI W X, et al. Thin-film nanocomposite membranes containing tannic acid-Fe3+ modified MoS2 nanosheets with enhanced nanofiltration performance[J]. Journal of Membrane Science, 2020, 616: 118605. |
32 | LIANG X, WANG P, WANG J, et al. Zwitterionic functionalized MoS2 nanosheets for a novel composite membrane with effective salt/dye separation performance[J]. Journal of Membrane Science, 2019, 573: 270-279. |
33 | SMITH R J, KING P J, LOTYA M, et al. Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions[J]. Advanced Materials, 2011, 23(34): 3944-3948. |
34 | LIU Q, LI X, HE Q, et al. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution[J]. Small, 2015, 11(41): 5556-5564. |
35 | JIA F, ZHANG X, SONG S. AFM study on the adsorption of Hg2+ on natural molybdenum disulfide in aqueous solutions[J]. Physical Chemistry Chemical Physics, 2017, 19(5): 3837-3844. |
36 | WANG Z, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two-dimensional MoS2 nanosheets: performance and mechanisms[J]. Environmental Science & Technology, 2018, 52(17): 9741-9748. |
37 | WANG J, ZHANG W, YUE X, et al. One-pot synthesis of multifunctional magnetic ferrite-MoS2-carbon dot nanohybrid adsorbent for efficient Pb(Ⅱ) removal[J]. Journal of Materials Chemistry A, 2016, 4(10): 3893-3900. |
38 | WANG J, WANG P, WANG H, et al. Preparation of molybdenum disulfide coated Mg/Al layered double hydroxide composites for efficient removal of chromium(Ⅵ)[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 7165-7174. |
39 | AGHAGOLI M J, SHEMIRANI F. Hybrid nanosheets composed of molybdenum disulfide and reduced graphene oxide for enhanced solid phase extraction of Pb(Ⅱ) and Ni(Ⅱ)[J]. Microchimica Acta, 2017, 184(1): 237-244. |
40 | AGHAGOLI M J, HOSSEIN BEYKI M, SHEMIRANI F. Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(Ⅱ) in vegetable and water samples[J]. Food Chemistry, 2017, 223: 8-15. |
41 | HEISING J, KANATZIDIS M G. Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard electropositive cations[J]. Journal of the American Chemical Society, 1999, 121(50): 11720-11732. |
42 | ALAM I, GUINEY L M, HERSAM M C, et al. Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes[J]. Journal of Membrane Science, 2020, 599: 117812. |
43 | RAN J, ZHANG P, CHU C, et al. Ultrathin lamellar MoS2 membranes for organic solvent nanofiltration[J]. Journal of Membrane Science, 2020, 602: 117963. |
44 | JIANG J W, QI Z N, PARK H S, et al. Elastic bending modulus of single-layer molybdenum disulfide (MoS2): finite thickness effect[J]. Nanotechnology, 2013, 24(43): 435705. |
45 | LU Q, ARROYO M, HUANG R. Elastic bending modulus of monolayer graphene[J]. Journal of Physics D: Applied Physics, 2009, 42(10): 102002. |
46 | ALAM I, GUINEY L M, HERSAM M C, et al. Antifouling properties of two-dimensional molybdenum disulfide and graphene oxide[J]. Environmental Science: Nano, 2018, 5(7): 1628-1639. |
47 | FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536(7615): 197-200. |
48 | INOUE A, KOMORI T, SHUDO K I. Atomic-scale structures and electronic states of defects on Ar+-ion irradiated MoS2[J]. Journal of Electron Spectroscopy and Related Phenomena, 2013, 189: 11-18. |
49 | FENG J, LIU K, GRAF M, et al. Electrochemical reaction in single layer MoS2: nanopores opened atom by atom[J]. Nano Letters, 2015, 15(5): 3431-3438. |
50 | ZHOU W, ZOU X, NAJMAEI S, et al. Intrinsic structural defects in monolayer molybdenum disulfide[J]. Nano Letters, 2013, 13(6): 2615-2622. |
51 | SAPKOTA B, LIANG W, VAHIDMOHAMMADI A, et al. High permeability sub-nanometre sieve composite MoS2 membranes[J]. Nature Communications, 2020, 11(1): 2747. |
52 | LI H, KO T J, LEE M, et al. Experimental realization of few layer two-dimensional MoS2 membranes of near atomic thickness for high efficiency water desalination[J]. Nano Letters, 2019, 19(8): 5194-5204. |
53 | KOU J, YAO J, WU L, et al. Nanoporous two-dimensional MoS2 membranes for fast saline solution purification[J]. Physical Chemistry Chemical Physics, 2016, 18(32): 22210-22216. |
54 | HEIRANIAN M, FARIMANI A B, ALURU N R. Water desalination with a single-layer MoS2 nanopore[J]. Nature Communications, 2015, 6: 8616. |
55 | ANG E Y M, NG T Y, YEO J, et al. Investigations on different two-dimensional materials as slit membranes for enhanced desalination[J]. Journal of Membrane Science, 2020, 598: 117653. |
56 | MAO S, WANG W, JIA F, et al. Laminar MoS2 membrane for high-efficient rejection of methyl orange from aqueous solution[J]. Chemical Physics, 2020, 530: 110609. |
57 | LI Z K, WEI Y, GAO X, et al. Antibiotics separation with MXene membranes based on regularly stacked high-aspect-ratio nanosheets[J]. Angewandte Chemie International Edition, 2020, 59(24): 9751-9756. |
58 | GAO J, ZHANG M, WANG J, et al. Bioinspired modification of layer-stacked molybdenum disulfide (MoS2) membranes for enhanced nanofiltration performance[J]. ACS Omega, 2019, 4(2): 4012-4022. |
59 | SUN L, YING Y, HUANG H, et al. Ultrafast molecule separation through layered WS2 nanosheet membranes[J]. ACS Nano, 2014, 8(6): 6304-6311. |
60 | SU Y, LIU D, YANG G, et al. Transition metal dichalcogenide (TMD) membranes with ultrasmall nanosheets for ultrafast molecule separation[J]. ACS Applied Materials & Interfaces, 2020, 12(40): 45453-45459. |
61 | LU X, GABINET U R, RITT C L, et al. Relating selectivity and separation performance of lamellar two-dimensional molybdenum disulfide (MoS2) membranes to nanosheet stacking behavior[J]. Environmental Science & Technology, 2020, 54(15): 9640-9651. |
62 | YANG S, ZHANG K. Few-layers MoS2 nanosheets modified thin film composite nanofiltration membranes with improved separation performance[J]. Journal of Membrane Science, 2020, 595: 117526. |
63 | LI Y, YANG S, ZHANG K, et al. Thin film nanocomposite reverse osmosis membrane modified by two dimensional laminar MoS2 with improved desalination performance and fouling-resistant characteristics[J]. Desalination, 2019, 454: 48-58. |
64 | ZHANG H, TAYMAZOV D, LI M P, et al. Construction of MoS2 composite membranes on ceramic hollow fibers for efficient water desalination[J]. Journal of Membrane Science, 2019, 592: 117369. |
65 | YANG S, JIANG Q, ZHANG K. Few-layers 2D O–MoS2 TFN nanofiltration membranes for future desalination[J]. Journal of Membrane Science, 2020, 604: 118052. |
[1] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[2] | CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610. |
[3] | REN Zhongyuan, HE Jinlong, YUAN Qing. Research progress on intercrystalline defects control and remediation technologies for zeolite membranes [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2454-2463. |
[4] | YE Haixing, CHEN Yuhao, CHEN Yi, SUN Haixiang, NIU Qingshan. Research progress of composite nanofiltration membrane for magnesium and lithium separation [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1934-1943. |
[5] | WANG Yan, QIN Zhenping, LIU Yue, ZHANG Wenhai, GUO Hongxia. Preparation and properties of β-cyclodextrin in-situ modified MoS2 tubular ceramic composite membrane [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5373-5380. |
[6] | YANG Kailu, CHEN Mingxing, WANG Xinya, ZHANG Wei, XIAO Changfa. Research progress of preparation and modification of nanofiltration membrane for dye wastewater treatment [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5470-5486. |
[7] | SUN Mengwei, LIU Zhuang, XIE Rui, JU Xiaojie, WANG Wei, CHU Liangyin. Preparation of Lanthanum ion intercalated MoS2 membrane for treating dyeing wastewater with high brine [J]. Chemical Industry and Engineering Progress, 2023, 42(1): 346-353. |
[8] | GAO Weitao, YIN Qinan, TU Ziqiang, GONG Fan, LI Yang, XU Hong, WANG Cheng, MAO Zongqiang. Proton transport in metal-organic frameworks and their applications in proton exchange membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 260-268. |
[9] | ZHANG Hongming, LU Jiongyuan, WANG Sanfan. Research progress on molecular structure of anion exchange membrane for fuel cells [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 318-330. |
[10] | QIN Jian, LIU Tianxia, WANG Jian, LU Xing. Preparation and tribological properties of oleic acid modified graphene/molybdenum disulfide composite lubricating additives [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4973-4985. |
[11] | FANG Longlong, ZHENG Wenji, NING Mengjia, ZHANG Mingyang, YANG Yuqing, DAI Yan, HE Gaohong. Enhanced CO2 separation of mixed matrix membranes by functionalized Zr-MOF [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4954-4962. |
[12] | ZHANG Saihui, LI Xiaoyang, GAO Hui, WANG Lili. Recent progress in additives in interfacial polymerization for the preparation of polyamide composite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4884-4894. |
[13] | ZHU Xiao, ZHU Junyong, ZHANG Yatao. Research progress of metal organic framework/polyamide thin film nanocomposite membrane [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4314-4326. |
[14] | HAN Guanglu, LU Kuan, LYU Jie, ZHANG Yonghui, CHEN Mohan. Carboxyl graphene composite membranes covalently crosslinked with diols and the n-butanol dehydration properties [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3801-3807. |
[15] | LI Peishan, ZHANG Mengchen, LI Mingjie, ZHENG Wenbiao, LIU Minchao, XIE Gaoyi, XU Xiaolong, LIU Changyu, JIA Jianbo. Nanofluidic channels based on two-dimensional material membranes [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3745-3757. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |