Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (10): 5554-5576.DOI: 10.16085/j.issn.1000-6613.2020-2165
• Materials science and technology • Previous Articles Next Articles
GONG Xue(), WANG Chengyao(), ZHU Qunzhi
Received:
2020-10-30
Revised:
2021-01-06
Online:
2021-10-25
Published:
2021-10-10
Contact:
WANG Chengyao
通讯作者:
王程遥
作者简介:
公雪(1992—),女,硕士研究生,研究方向为微胶囊相变材料。E-mail:基金资助:
CLC Number:
GONG Xue, WANG Chengyao, ZHU Qunzhi. Research progress on preparation and application of microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5554-5576.
公雪, 王程遥, 朱群志. 微胶囊相变材料制备与应用研究进展[J]. 化工进展, 2021, 40(10): 5554-5576.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2165
分类 | 常见化合物 | 特点 |
---|---|---|
醇类[ | 十二醇、十四醇、环己醇、叔丁醇等多元醇 | 无过冷和相分离现象、无毒、腐蚀性小、热效率高、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
酯类[ | 硬脂酸丁酯、硬脂酸辛酯 | 良好的热性能和可靠性,有利于低温传热应用;热导率小、储热密度小、易挥发燃烧、易氧化老化 |
烃类[ | 聚乙烯蜡、液体石蜡、正十六烷、正十八烷 | 无过冷和相分离现象、稳定性好、腐蚀性极小、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
脂肪酸类[ | 月桂酸、癸酸、辛酸、十二烷酸 | 潜热值大、过冷度低、无毒、稳定性好、相容性好、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
无机物[ | 结晶水和盐、熔融盐、金属合金 | 潜热值大、储能密度高、相变体积变化小、廉价易得、过冷度大、易析出分离、有一定腐蚀性 |
分类 | 常见化合物 | 特点 |
---|---|---|
醇类[ | 十二醇、十四醇、环己醇、叔丁醇等多元醇 | 无过冷和相分离现象、无毒、腐蚀性小、热效率高、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
酯类[ | 硬脂酸丁酯、硬脂酸辛酯 | 良好的热性能和可靠性,有利于低温传热应用;热导率小、储热密度小、易挥发燃烧、易氧化老化 |
烃类[ | 聚乙烯蜡、液体石蜡、正十六烷、正十八烷 | 无过冷和相分离现象、稳定性好、腐蚀性极小、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
脂肪酸类[ | 月桂酸、癸酸、辛酸、十二烷酸 | 潜热值大、过冷度低、无毒、稳定性好、相容性好、热导率小、储热密度小、易挥发燃烧、易氧化老化 |
无机物[ | 结晶水和盐、熔融盐、金属合金 | 潜热值大、储能密度高、相变体积变化小、廉价易得、过冷度大、易析出分离、有一定腐蚀性 |
分类 | 壳材 | 特点 |
---|---|---|
无机高分子材料 | 碳酸钙、石墨烯、硅酸盐、二氧化钛、二氧化硅、黏土、硫化物、铝、铜等 | 成膜性能非常差,具有功能性 |
有机高分子材料 | ||
天然高分子材料[ | 动物蛋白:明胶、乳清蛋白、丝素蛋白 植物蛋白:大豆蛋白、豌豆蛋白 多糖:阿拉伯树胶、果胶、壳聚糖、琼脂、海藻酸钠、卡拉胶、羧甲基纤维素钠 | 良好的生物降解性、无毒,稳定、成膜性好 |
半合成高分子材料 | 甲酸乙酸纤维素、邻苯二甲酸丁酸纤维素、丁酸乙酸纤维素、甲基纤维素、羧甲基纤维素、羧甲基纤维素钠、乙基纤维素、羟丙基纤维素、琥珀酸乙酸纤维素等 | 毒性小,黏度大,成盐后溶解度增大易水解,不宜高温处理,需临时用现制 |
合成高分子材料[ | 酚醛树脂、密胺树脂、脲醛树脂、聚氨酯、聚丁二烯、聚乙烯、环氧树酯、聚酰胺、聚苯乙烯、三聚氰胺-甲醛树脂、氨基树脂类、乙酸树脂类、聚脲、合成橡胶等 | 成膜性好,化学性能稳定,部分材料释放甲醛,不利于环境保护 |
分类 | 壳材 | 特点 |
---|---|---|
无机高分子材料 | 碳酸钙、石墨烯、硅酸盐、二氧化钛、二氧化硅、黏土、硫化物、铝、铜等 | 成膜性能非常差,具有功能性 |
有机高分子材料 | ||
天然高分子材料[ | 动物蛋白:明胶、乳清蛋白、丝素蛋白 植物蛋白:大豆蛋白、豌豆蛋白 多糖:阿拉伯树胶、果胶、壳聚糖、琼脂、海藻酸钠、卡拉胶、羧甲基纤维素钠 | 良好的生物降解性、无毒,稳定、成膜性好 |
半合成高分子材料 | 甲酸乙酸纤维素、邻苯二甲酸丁酸纤维素、丁酸乙酸纤维素、甲基纤维素、羧甲基纤维素、羧甲基纤维素钠、乙基纤维素、羟丙基纤维素、琥珀酸乙酸纤维素等 | 毒性小,黏度大,成盐后溶解度增大易水解,不宜高温处理,需临时用现制 |
合成高分子材料[ | 酚醛树脂、密胺树脂、脲醛树脂、聚氨酯、聚丁二烯、聚乙烯、环氧树酯、聚酰胺、聚苯乙烯、三聚氰胺-甲醛树脂、氨基树脂类、乙酸树脂类、聚脲、合成橡胶等 | 成膜性好,化学性能稳定,部分材料释放甲醛,不利于环境保护 |
制备方法 | 芯材 | 壳材 | 粒径分布 /μm | 包覆率 /% | 熔点 /℃ | 熔化潜热 /J·g-1 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
喷雾干燥法 | 正十八烷 石蜡(Rubitherm?RT27) 石蜡 | 二氧化钛 低密度聚乙烯和乙酸乙烯酯共聚物 二氧化硅 | 0.1~5 <10 | — 63.0 82.2 | 28.7 28.4 57.9 | 92~97 98.1 156.9 | 操作简便、生产效率高、用途广泛、花费低、适宜工业化生产 | 包埋率低、设备复杂、占地面积大、一次性投资大、耗能大 | [ [ [ |
溶胶-凝胶法 | 硬脂醇 正十二醇 棕榈酸 石蜡 | 二氧化硅 二氧化硅 二氧化硅 二氧化钛 | 62~464 — 386~488 80~90 | 91.1 49.2 53.5 69.4 | 55.9 21.0 62.0 61.8 | 229.7 116.7 109.9 90.4 | 导热快、可靠性高 | 原料价格比较昂贵、部分有机物损害健康 | [ [ [ [ |
复凝聚法 | 石蜡(Rubitherm?RT27) 石腊 辛酸 | 明胶/阿拉伯树胶 明胶/阿拉伯树胶 脲醛,三聚氰胺甲醛 | 12.0 — 0.2~1.5 | 49.0 80.0 59.3 | 62.5 25.0 13.9 | 239.8 144.7 93.9 | 非水溶性芯材高效、高产 | 成本高、易凝聚、保质期短、可靠性低 | [ [ [ |
界面聚合法 | 石蜡 正十八烷 十二酸十二醇 硬脂酸丁酯 硬脂酸丁酯 | 聚甲基丙烯酸甲酯 聚氨酯 聚脲 聚氨酯 聚脲树脂 | 200~400 5~10 10~40 10~35 10~300 | 52.9 40~70 — 78.5 — | 20.3 — 31.7 22.3 17.7 | 122.4 110.0 140.3 81.0 104.4 | 操作方法简单、反应速度快、成本低、可降解、包封率高 | 对壳材要求高、力学性能差 | [ [ [ [ [ |
原位聚合法 | 石蜡 正十八烷 正十九烷 正二十烷 正十八烷 | 三聚氰胺脲甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 三聚氰胺甲醛 | 2.7~5.6 0.3~6.4 — — 2.2 | — 72.0 69.0 71.0 59.0 | 27.4 36.5 29.3 45.3 40.6 | 134.3 167.5 161.0 172.0 144.0 | 易形成球形、壳层厚度及包覆的物质含量易控制 | 操作复杂、对壳材和芯材有要求、需要控制反应条件多 | [ [ [ [ [ |
悬浮聚合法 | 正十八烷 正十八烷 PRS?石蜡 石蜡(Rubitherm?RT27) | 甲基丙烯酸正十八烷基共聚物 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 聚苯乙烯 | 0.5~4.0 2~75 0.1~221 3.8 | — — 75.6 — | 26.5 29.1 — — | 91.0 112.0 153.5 79.0 | 良好的反应热控制、单体水溶性差、保质期长、可靠性高 | [ [ [ [ | |
微乳液聚合法 | 正十八烷 正十七烷 正十九烷 | 聚二乙烯基苯 聚苯乙烯 聚甲基丙烯酸甲酯 | 1.5 1~20 0.1~35 | — 63.3 60.3 | 22.6 21.5 31.2 | 192 136.9 139.2 | 不使用挥发性溶剂、保质期长、可靠性高 | [ [ [ |
制备方法 | 芯材 | 壳材 | 粒径分布 /μm | 包覆率 /% | 熔点 /℃ | 熔化潜热 /J·g-1 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
喷雾干燥法 | 正十八烷 石蜡(Rubitherm?RT27) 石蜡 | 二氧化钛 低密度聚乙烯和乙酸乙烯酯共聚物 二氧化硅 | 0.1~5 <10 | — 63.0 82.2 | 28.7 28.4 57.9 | 92~97 98.1 156.9 | 操作简便、生产效率高、用途广泛、花费低、适宜工业化生产 | 包埋率低、设备复杂、占地面积大、一次性投资大、耗能大 | [ [ [ |
溶胶-凝胶法 | 硬脂醇 正十二醇 棕榈酸 石蜡 | 二氧化硅 二氧化硅 二氧化硅 二氧化钛 | 62~464 — 386~488 80~90 | 91.1 49.2 53.5 69.4 | 55.9 21.0 62.0 61.8 | 229.7 116.7 109.9 90.4 | 导热快、可靠性高 | 原料价格比较昂贵、部分有机物损害健康 | [ [ [ [ |
复凝聚法 | 石蜡(Rubitherm?RT27) 石腊 辛酸 | 明胶/阿拉伯树胶 明胶/阿拉伯树胶 脲醛,三聚氰胺甲醛 | 12.0 — 0.2~1.5 | 49.0 80.0 59.3 | 62.5 25.0 13.9 | 239.8 144.7 93.9 | 非水溶性芯材高效、高产 | 成本高、易凝聚、保质期短、可靠性低 | [ [ [ |
界面聚合法 | 石蜡 正十八烷 十二酸十二醇 硬脂酸丁酯 硬脂酸丁酯 | 聚甲基丙烯酸甲酯 聚氨酯 聚脲 聚氨酯 聚脲树脂 | 200~400 5~10 10~40 10~35 10~300 | 52.9 40~70 — 78.5 — | 20.3 — 31.7 22.3 17.7 | 122.4 110.0 140.3 81.0 104.4 | 操作方法简单、反应速度快、成本低、可降解、包封率高 | 对壳材要求高、力学性能差 | [ [ [ [ [ |
原位聚合法 | 石蜡 正十八烷 正十九烷 正二十烷 正十八烷 | 三聚氰胺脲甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 尿素-三聚氰胺-甲醛 三聚氰胺甲醛 | 2.7~5.6 0.3~6.4 — — 2.2 | — 72.0 69.0 71.0 59.0 | 27.4 36.5 29.3 45.3 40.6 | 134.3 167.5 161.0 172.0 144.0 | 易形成球形、壳层厚度及包覆的物质含量易控制 | 操作复杂、对壳材和芯材有要求、需要控制反应条件多 | [ [ [ [ [ |
悬浮聚合法 | 正十八烷 正十八烷 PRS?石蜡 石蜡(Rubitherm?RT27) | 甲基丙烯酸正十八烷基共聚物 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 聚苯乙烯 | 0.5~4.0 2~75 0.1~221 3.8 | — — 75.6 — | 26.5 29.1 — — | 91.0 112.0 153.5 79.0 | 良好的反应热控制、单体水溶性差、保质期长、可靠性高 | [ [ [ [ | |
微乳液聚合法 | 正十八烷 正十七烷 正十九烷 | 聚二乙烯基苯 聚苯乙烯 聚甲基丙烯酸甲酯 | 1.5 1~20 0.1~35 | — 63.3 60.3 | 22.6 21.5 31.2 | 192 136.9 139.2 | 不使用挥发性溶剂、保质期长、可靠性高 | [ [ [ |
方法 | 芯材 | 壳材 | 芯材熔化潜热 /J·g-1 | 微胶囊熔化 潜热/J·g-1 | 芯材凝固 潜热/J·g-1 | 微胶囊凝固 潜热/J·g-1 | 包覆率 /% | 结论 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
原位聚合法和 化学镀法 | 1-十四醇(TD) | 三聚氰胺、 尿素和甲醛 | 209.8 209.8 209.8 209.8 | 116.7 98.5 126.6 119.4 | 207.5 207.5 207.5 207.5 | 116.4 93.9 120.9 111.0 | 55.6 46.9 60.3 56.9 | 相变微胶囊镀银后可有效抑制相变材料的过冷,并提高包覆效率 | [ |
原位聚合法 | 石蜡 | 三聚氰胺、 尿素和甲醛 | 70.1 70.1 70.1 70.1 70.1 | 35.6 28.8 23.7 32.2 29.4 | 73.6 73.6 73.6 73.6 73.6 | 45.5 33.6 29.6 39.5 39.0 | 56.4 43.4 37.1 49.9 47.6 | 加入氧化石墨烯后增强了MCPCM粒度均匀性、热稳定性和不渗透性。随着微胶囊含量的增加,石膏材料的力学性能下降 | [ |
悬浮聚合法 | 正十二醇 | 丙烯酸树脂 | 216.0 | 93.31 | 207.8 | 78.16 | 43 | MEPCM降低了PCM过冷度,提升了PCM对温度变化的响应速度,增大了储能 | [ |
溶胶-凝胶法 | 石蜡 | 二氧化钛 | 130.3 | 90.37 | 127.8 | 94.66 | 69.36 | MEPCM具有良好的热稳定性,包覆较好,可有效防止石蜡泄漏 | [ |
溶胶-凝胶法 | 正十二醇 | 二氧化硅 | 210.13 | 103.4 | 209.3 | 99.64 | 49.21 | 乳化剂、溶液pH、芯壳比都会影响MCPCM的包覆率 | [ |
化学沉淀法 | 正十二醇 | 二氧化硅 | 210.13 | 116.7 | 209.3 | 114.61 | 55.54 | 当芯壳比由2∶1增加到 5∶1时,微胶囊的相变焓先增大后减少,形成的壳材较薄,后处理中易泄漏 | [ |
方法 | 芯材 | 壳材 | 芯材熔化潜热 /J·g-1 | 微胶囊熔化 潜热/J·g-1 | 芯材凝固 潜热/J·g-1 | 微胶囊凝固 潜热/J·g-1 | 包覆率 /% | 结论 | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|
原位聚合法和 化学镀法 | 1-十四醇(TD) | 三聚氰胺、 尿素和甲醛 | 209.8 209.8 209.8 209.8 | 116.7 98.5 126.6 119.4 | 207.5 207.5 207.5 207.5 | 116.4 93.9 120.9 111.0 | 55.6 46.9 60.3 56.9 | 相变微胶囊镀银后可有效抑制相变材料的过冷,并提高包覆效率 | [ |
原位聚合法 | 石蜡 | 三聚氰胺、 尿素和甲醛 | 70.1 70.1 70.1 70.1 70.1 | 35.6 28.8 23.7 32.2 29.4 | 73.6 73.6 73.6 73.6 73.6 | 45.5 33.6 29.6 39.5 39.0 | 56.4 43.4 37.1 49.9 47.6 | 加入氧化石墨烯后增强了MCPCM粒度均匀性、热稳定性和不渗透性。随着微胶囊含量的增加,石膏材料的力学性能下降 | [ |
悬浮聚合法 | 正十二醇 | 丙烯酸树脂 | 216.0 | 93.31 | 207.8 | 78.16 | 43 | MEPCM降低了PCM过冷度,提升了PCM对温度变化的响应速度,增大了储能 | [ |
溶胶-凝胶法 | 石蜡 | 二氧化钛 | 130.3 | 90.37 | 127.8 | 94.66 | 69.36 | MEPCM具有良好的热稳定性,包覆较好,可有效防止石蜡泄漏 | [ |
溶胶-凝胶法 | 正十二醇 | 二氧化硅 | 210.13 | 103.4 | 209.3 | 99.64 | 49.21 | 乳化剂、溶液pH、芯壳比都会影响MCPCM的包覆率 | [ |
化学沉淀法 | 正十二醇 | 二氧化硅 | 210.13 | 116.7 | 209.3 | 114.61 | 55.54 | 当芯壳比由2∶1增加到 5∶1时,微胶囊的相变焓先增大后减少,形成的壳材较薄,后处理中易泄漏 | [ |
方法 | 芯材 | 壳材 | 粒径分布/μm | 参考文献 |
---|---|---|---|---|
喷雾干燥法 | 正十八烷 | 二氧化钛 | 0.1~5 | [ |
溶胶-凝胶法 | 硬脂醇 | 二氧化硅 | 62~464 | [ |
棕榈酸 | 二氧化硅 | 386~488 | [ | |
复凝聚法 | 辛酸 | 脲醛、三聚氰胺甲醛 | 0.2~1.5 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 200~400 | [ |
十二酸十二醇 | 聚脲 | 10~40 | [ | |
原位聚合法 | 28#石蜡 | 尿素-三聚氰胺-甲醛 | 2.75~5.62 | [ |
正十八烷 | 尿素-三聚氰胺-甲醛 | 0.3~6.4 | [ | |
悬浮聚合法 | PRS?石蜡 | 聚苯乙烯 | 0.13~221 | [ |
正十八烷 | 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 | 2~75 | [ | |
微乳液聚合法 | 正十七烷 | 聚苯乙烯 | 1~20 | [ |
正十九烷 | 聚甲基丙烯酸甲酯 | 0.1~35 | [ | |
原位聚合法 | 硬脂酸丁酯 | 三聚氰胺甲醛树脂 | 20~200 | [ |
原位聚合法 | 正十八烷 | 尿素-三聚氰胺-甲醛 | 0.5~5 | [ |
界面聚合法 | 硬脂酸丁酯 | 脲醛树脂 | 10~300 | [ |
界面聚合法 | 30#石蜡 | 聚甲基丙烯酸丁酯 | 10~600 | [ |
方法 | 芯材 | 壳材 | 粒径分布/μm | 参考文献 |
---|---|---|---|---|
喷雾干燥法 | 正十八烷 | 二氧化钛 | 0.1~5 | [ |
溶胶-凝胶法 | 硬脂醇 | 二氧化硅 | 62~464 | [ |
棕榈酸 | 二氧化硅 | 386~488 | [ | |
复凝聚法 | 辛酸 | 脲醛、三聚氰胺甲醛 | 0.2~1.5 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 200~400 | [ |
十二酸十二醇 | 聚脲 | 10~40 | [ | |
原位聚合法 | 28#石蜡 | 尿素-三聚氰胺-甲醛 | 2.75~5.62 | [ |
正十八烷 | 尿素-三聚氰胺-甲醛 | 0.3~6.4 | [ | |
悬浮聚合法 | PRS?石蜡 | 聚苯乙烯 | 0.13~221 | [ |
正十八烷 | 聚甲基丙烯酸丁酯、聚丙烯酸丁酯 | 2~75 | [ | |
微乳液聚合法 | 正十七烷 | 聚苯乙烯 | 1~20 | [ |
正十九烷 | 聚甲基丙烯酸甲酯 | 0.1~35 | [ | |
原位聚合法 | 硬脂酸丁酯 | 三聚氰胺甲醛树脂 | 20~200 | [ |
原位聚合法 | 正十八烷 | 尿素-三聚氰胺-甲醛 | 0.5~5 | [ |
界面聚合法 | 硬脂酸丁酯 | 脲醛树脂 | 10~300 | [ |
界面聚合法 | 30#石蜡 | 聚甲基丙烯酸丁酯 | 10~600 | [ |
方法 | 芯材 | 壳材 | 芯壳比 | 熔化潜热 /J·g-1 | 包覆率 | 结论 | 参考文献 |
---|---|---|---|---|---|---|---|
原位聚合法 | 石蜡 | 脲醛树脂 | 1∶1 1.5∶1 2∶1 | 33~39 68~91 73~107 | — — — | 芯壳比是影响微胶囊相变潜热的首要因素,随着芯壳比增大,潜热增大,但芯壳比大于1.5∶1时,易出现壳材包覆不完全、壳材粘连、微胶囊团聚现象 | [ |
复凝聚法 | 低温有机相变材料 | 三聚氰胺-尿素-甲醛树脂 | 1∶3 1∶2 1∶1 | 18.56 31.63 47.55 | 16.71 28.47 42.80 | 随着芯壳比的增加,MCPCM的相变潜热逐渐增大,相应的封装效率和储能效率逐渐增加,且微胶囊中PCM的结晶温度逐渐降低,MCPCM呈现出优异的相变滞后性能 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 1∶1 4∶3 5∶3 2∶1 | 64.93 62.34 62.17 60.30 | 52.95 50.88 49.99 48.09 | 随着芯壳比的增加,其焓值和封装效率逐渐提高。熔融温度略有提高,而冻结温度逐渐降低,这可能是由PMMA壳层厚度变化引起的。芯壳比为4∶3可制备出更佳的胶囊 | [ |
原位聚合法 | 脂肪酸 | 聚苯乙烯 | 1∶1 1.5∶1 2∶1 2.5∶1 | — — — — | 44.2 52.8 60.3 51.2 | 芯壳比在(1~2)∶1时微胶囊的包覆率呈上升趋势,继续增大比例,包覆率呈现下降趋势,3∶1时无法形成微胶囊。芯壳比过高会导致芯材渗漏,无法制备出微胶囊 | [ |
方法 | 芯材 | 壳材 | 芯壳比 | 熔化潜热 /J·g-1 | 包覆率 | 结论 | 参考文献 |
---|---|---|---|---|---|---|---|
原位聚合法 | 石蜡 | 脲醛树脂 | 1∶1 1.5∶1 2∶1 | 33~39 68~91 73~107 | — — — | 芯壳比是影响微胶囊相变潜热的首要因素,随着芯壳比增大,潜热增大,但芯壳比大于1.5∶1时,易出现壳材包覆不完全、壳材粘连、微胶囊团聚现象 | [ |
复凝聚法 | 低温有机相变材料 | 三聚氰胺-尿素-甲醛树脂 | 1∶3 1∶2 1∶1 | 18.56 31.63 47.55 | 16.71 28.47 42.80 | 随着芯壳比的增加,MCPCM的相变潜热逐渐增大,相应的封装效率和储能效率逐渐增加,且微胶囊中PCM的结晶温度逐渐降低,MCPCM呈现出优异的相变滞后性能 | [ |
界面聚合法 | 石蜡 | 聚甲基丙烯酸甲酯 | 1∶1 4∶3 5∶3 2∶1 | 64.93 62.34 62.17 60.30 | 52.95 50.88 49.99 48.09 | 随着芯壳比的增加,其焓值和封装效率逐渐提高。熔融温度略有提高,而冻结温度逐渐降低,这可能是由PMMA壳层厚度变化引起的。芯壳比为4∶3可制备出更佳的胶囊 | [ |
原位聚合法 | 脂肪酸 | 聚苯乙烯 | 1∶1 1.5∶1 2∶1 2.5∶1 | — — — — | 44.2 52.8 60.3 51.2 | 芯壳比在(1~2)∶1时微胶囊的包覆率呈上升趋势,继续增大比例,包覆率呈现下降趋势,3∶1时无法形成微胶囊。芯壳比过高会导致芯材渗漏,无法制备出微胶囊 | [ |
材料 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 熔化潜热/J·g-1 | 结论 | 参考文献 |
---|---|---|---|---|---|
正十二烷/SiO2微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15% | 946.4 995 993 990 | kp=0.749 kb=0.60 kb=0.61 kb=0.62 | 192.7 13.23 22.33 31.48 | 微胶囊相变材料的加入提高了系统的热、电和?效率。增加悬浮液浓度能提高体系的性能,但使用浓度过高,增强率降低 | [ |
正十八烷/PMMA微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=20% | 867.2 989.6 982.3 968.0 | kp=0.164 kb=0.571 kb=0.541 kb=0.483 | 147.1 — — — | MCPCM悬浮液增强了管道换热效果。利用螺旋波纹管增强流体扰动,改善因悬浮液浓度高时热导率减小和黏度增大引起的传热不利 | [ |
1-溴十六烷/氨基塑料(脲醛)微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15.8% | 1045 1000 1002 1005 | kp=0.211 kb=0.576 kb=0.553 kb=0.527 | 130 6.5 13.0 20.5 | MCPCM悬浮液增大了换热率,泵耗大大降低。质量分数越高,其传热强化比越大。实际应用中具有良好的可行性 | [ |
材料 | 密度/kg·m-3 | 热导率/W·m-1·K-1 | 熔化潜热/J·g-1 | 结论 | 参考文献 |
---|---|---|---|---|---|
正十二烷/SiO2微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15% | 946.4 995 993 990 | kp=0.749 kb=0.60 kb=0.61 kb=0.62 | 192.7 13.23 22.33 31.48 | 微胶囊相变材料的加入提高了系统的热、电和?效率。增加悬浮液浓度能提高体系的性能,但使用浓度过高,增强率降低 | [ |
正十八烷/PMMA微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=20% | 867.2 989.6 982.3 968.0 | kp=0.164 kb=0.571 kb=0.541 kb=0.483 | 147.1 — — — | MCPCM悬浮液增强了管道换热效果。利用螺旋波纹管增强流体扰动,改善因悬浮液浓度高时热导率减小和黏度增大引起的传热不利 | [ |
1-溴十六烷/氨基塑料(脲醛)微胶囊颗粒 微胶囊悬浮液 cm=5% cm=10% cm=15.8% | 1045 1000 1002 1005 | kp=0.211 kb=0.576 kb=0.553 kb=0.527 | 130 6.5 13.0 20.5 | MCPCM悬浮液增大了换热率,泵耗大大降低。质量分数越高,其传热强化比越大。实际应用中具有良好的可行性 | [ |
32 | FEI B, LU H, QI K, et al. Multi-functional microcapsules produced by aerosol reaction[J]. Journal of Aerosol Science, 2008, 39(12): 1089-1098. |
33 | BORREGUERO A M, VALVERDE J L, RODRIGUEZ J F, et al. Synthesis and characterization of microcapsules containing Rubitherm® RT27 obtained by spray drying[J]. Chemical Engineering Journal, 2011, 166(1): 384-390. |
34 | CHEN Z, CAO L, FANG G, et al. Synthesis and characterization of microencapsulated paraffin microcapsules as shape-stabilized thermal energy storage materials[J]. Nanoscale and Microscale Thermophysical Engineering, 2013, 17(2): 112-123. |
35 | ZHU C, LIN Y, FANG G. Preparation and thermal properties of microencapsulated stearyl alcohol with silicon dioxide shell as thermal energy storage materials[J]. Applied Thermal Engineering, 2020, 169: 114943. |
36 | 耿丽霞. 正十二醇/二氧化硅微胶囊相变材料的制备及热物性研究[D]. 广州: 华南理工大学, 2017. |
GENG Lixia. Preparation and thermal properties of N-dodecanol@SiO2 microencapsulated phase change materials[D]. Guangzhou: South China University of Technology, 2017. | |
37 | 张军强, 王花枝, 杨志涛, 等. 棕榈酸/SiO2纳米胶囊的制备及其储热性能[J]. 功能材料, 2019, 50(11): 11065-11069. |
ZHANG Junqiang, WANG Huazhi, YANG Zhitao, et al. Preparation and thermal energy storage properties of palmitic acid/SiO2 nanocapsules[J]. Journal of Functional Materials, 2019, 50(11): 11065-11069. | |
38 | 周龙祥, 王保明, 田玉提, 等. 二氧化钛包覆石蜡相变微胶囊的制备及表征[J]. 现代化工, 2019, 39(3): 82-86. |
ZHOU Longxiang, WANG Baoming, TIAN Yuti, et al. Preparation and characterization of titanium oxide-coated microencapsulated paraffin phase change materials[J]. Modern Chemical Industry, 2019, 39(3): 82-86. | |
39 | ÖZONUR Y, MAZMAN M, PAKSOY H Ö, et al. Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material[J]. International Journal of Energy Research, 2006, 30(10): 741-749. |
40 | ONDER E, SARIER N, CIMEN E. Encapsulation of phase change materials by complex coacervation to improve thermal performances of woven fabrics[J]. Thermochimica Acta, 2008, 467(1/2): 63-72. |
1 | 李昭, 李宝让, 陈豪志, 等. 相变储热技术研究进展[J]. 化工进展, 2020, 39(12): 5066-5085. |
LI Zhao, LI Baorang, CHEN Haozhi, et al. State of the art review on phase change thermal energy storage technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5066-5085. | |
2 | JAVADI F S, METSELAAR H S C, GANESAN P. Performance improvement of solar thermal systems integrated with phase change materials (PCM), a review[J]. Solar Energy, 2020, 206: 330-352. |
3 | QASIM M A, ALI H M, KHAN M N, et al. The effect of using hybrid phase change materials on thermal management of photovoltaic panels—An experimental study[J]. Solar Energy, 2020, 209: 415-423. |
4 | SHARMA R K, GANESAN P, TYAGI V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228. |
5 | 申天伟, 陆少锋, 张晶, 等. 低黄变聚脲微胶囊相变材料的制备及性能表征[J]. 化工进展, 2017, 36(12): 4547-4553. |
SHEN Tianwei, LU Shaofeng, ZHANG Jing, et al. Preparation and performance characterization of low-yellowing polyurea microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4547-4553. | |
6 | XU B, ZHOU J, NI Z, et al. Synthesis of novel microencapsulated phase change materials with copper and copper oxide for solar energy storage and photo-thermal conversion[J]. Solar Energy Materials and Solar Cells, 2018, 179: 87-94. |
7 | CHEN Z, FANG G. Preparation and heat transfer characteristics of microencapsulated phase change material slurry: a review[J]. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4624-4632. |
8 | CUI H, LIAO W, MI X, et al. Study on functional and mechanical properties of cement mortar with graphite-modified microencapsulated phase-change materials[J]. Energy and Buildings, 2015, 105: 273-284. |
9 | FRAZZICA A, BRANCATO V, PALOMBA V, et al. Thermal performance of hybrid cement mortar-PCMs for warm climates application[J]. Solar Energy Materials and Solar Cells, 2019, 193: 270-280. |
10 | THIELE A M, SANT G, PILON L. Diurnal thermal analysis of microencapsulated PCM-concrete composite walls[J]. Energy Conversion and Management, 2015, 93: 215-227. |
11 | GENG X, LI W, WANG Y, et al. Reversible thermochromic microencapsulated phase change materials for thermal energy storage application in thermal protective clothing[J]. Applied Energy, 2018, 217: 281-294. |
12 | GENG X, LI W, YIN Q, et al. Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity[J]. Energy, 2018, 159: 857-869. |
13 | SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012, 540: 7-60. |
14 | JIANG F, WANG X, WU D. Magnetic microencapsulated phase change materials with an organo-silica shell: design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films[J]. Energy, 2016, 98: 225-239. |
15 | 郭军红, 邵竞尧, 许芬, 等. RAM-相变微胶囊红外微波隐身复合材料[J]. 精细化工, 2017, 34(12): 1350-1355, 1369. |
GUO Junhong, SHAO Jingyao, XU Fen, et al. RAM-microencapsulated phase change infrared and microwave stealth composites[J]. Fine Chemicals, 2017, 34(12): 1350-1355, 1369. | |
16 | 李兆宁, 赵彦杰, 范亚茹. 相变蓄冷浆体材料研究进展[J]. 化工进展, 2018, 37(S1): 108-116. |
LI Zhaoning, ZHAO Yanjie, FAN Yaru. Research progress of phase change cold storage slurry materials[J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 108-116. | |
17 | CHEN S, WANG X, LI W, et al. Experimental study on cooling performance of microencapsulated phase change suspension in a PEMFC[J]. International Journal of Hydrogen Energy, 2017, 42(50): 30004-30012. |
18 | TRIVEDI G V N, PARAMESHWARAN R. Microencapsulated phase change material suspensions for cool thermal energy storage[J]. Materials Chemistry and Physics, 2020, 242: 122519. |
19 | WANG Z, QU J, ZHANG R, et al. Photo-thermal performance evaluation on MWCNTs-dispersed microencapsulated PCM slurries for direct absorption solar collectors[J]. Journal of Energy Storage, 2019, 26: 100793. |
20 | 李兴会, 陈敏智, 周晓燕. 复合定形相变材料的封装及应用研究新进展[J]. 工程科学学报, 2020, 42(11): 1422-1432. |
LI Xinghui, CHEN Minzhi, ZHOU Xiaoyan. Research progress in encapsulation and application of shape-stabilized composite phase-change materials[J]. Chinese Journal of Engineering, 2020, 42 (11): 1422-1432. | |
41 | KONUKLU Y, UNAL M, PAKSOY H. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 120: 536-542. |
42 | SHI J, WU X, SUN R, et al. Nano-encapsulated phase change materials prepared by one-step interfacial polymerization for thermal energy storage[J]. Materials Chemistry and Physics, 2019, 231: 244-251. |
43 | SU J F, WANG L X, REN L. Synthesis of polyurethane microPCMs containing n-octadecane by interfacial polycondensation: influence of styrene-maleic anhydride as a surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 299(1/2/3): 268-275. |
44 | CAI C, OUYANG X, ZHOU L, et al. Co-solvent free interfacial polycondensation and properties of polyurea PCM microcapsules with dodecanol dodecanoate as core material[J]. Solar Energy, 2020, 199: 721-730. |
21 | 徐众, 侯静, 李军, 等. 膨胀石墨/有机质复合相变材料的制备及性能[J]. 化工进展, 2020, 39(7): 2758-2767. |
XU Zhong, HOU Jing, LI Jun, et al. Preparation and performances of expanded graphite/organic matter composite phase change materials[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2758-2767. | |
45 | LU S, SHEN T, XING J, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters, 2018, 211: 36-39. |
46 | 王宇欣, 刘爽, 王平智, 等. 温室蓄热微胶囊相变材料制备筛选与性能表征[J]. 农业机械学报, 2016, 47(9): 348-358. |
WANG Yuxin, LIU Shuang, WANG Pingzhi, et al. Preparation and characterization of microencapsulated phase change materials for greenhouse application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(9): 348-358. | |
47 | HAN S, CHEN Y, LYU S, et al. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585: 124046. |
22 | JIANG B, WANG X, WU D. Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: a novel design of applied energy microsystem for bioapplications[J]. Applied Energy, 2017, 201: 20-33. |
23 | LUO R, WANG S, WANG T, et al. Fabrication of paraffin@SiO2 shape-stabilized composite phase change material via chemical precipitation method for building energy conservation[J]. Energy and Buildings, 2015, 108: 373-380. |
48 | ZHANG X, FAN Y, TAO X, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
49 | LI W, ZHANG X X, WANG X C, et al. Preparation and characterization of microencapsulated phase change material with low remnant formaldehyde content[J]. Materials Chemistry and Physics, 2007, 106(2/3): 437-442. |
24 | MO S, HE L, JIA L, et al. Thermophysical properties of a novel nanoencapsulated phase change material[J]. International Journal of Thermophysics, 2020, 41(5): 1-12. |
25 | AYDIN Ahmet Alper. High-chain fatty acid esters of 1-octadecanol as novel organic phase change materials and mathematical correlations for estimating the thermal properties of higher fatty acid esters' homologous series[J]. Solar Energy Materials and Solar Cells, 2013, 113: 44-51. |
50 | TANG X, LI W, ZHANG X, et al. Fabrication and characterization of microencapsulated phase change material with low supercooling for thermal energy storage[J]. Energy, 2014, 68: 160-166. |
51 | QIU X, SONG G, CHU X, et al. Preparation, thermal properties and thermal reliabilities of microencapsulated n-octadecane with acrylic-based polymer shells for thermal energy storage[J]. Thermochimica Acta, 2013, 551: 136-144. |
26 | HASL T, JIRICEK I. The prediction of heat storage properties by the study of structural effect on organic phase change materials[J]. Energy Procedia, 2014, 46(1): 301-309. |
27 | YUAN Yanping, ZHANG Nan, TAO Wenquan, et al. Fatty acids as phase change materials: a review[J]. Renewable and Sustainable Energy Reviews, 2014, 29(7): 482-498. |
28 | 陈涛, 孙寒雪, 朱照琪, 等. (准)共晶系相变储能材料的研究进展[J]. 化工进展, 2019, 38(7): 3265-3273. |
CHEN Tao, SUN Hanxue, ZHU Zhaoqi, et al. Progress in studies of(quasi-)eutectic phase change energy storage materials[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3265-3273. | |
29 | PENG H, WANG J, ZHANG X, et al. A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems[J]. Applied Thermal Engineering, 2021, 185: 116326. |
30 | ZHANG T, WANG Y, SHI H, et al. Fabrication and performances of new kind microencapsulated phase change material based on stearic acid core and polycarbonate shell[J]. Energy Conversion and Management, 2012, 64: 1-7. |
31 | NIU X F, XU Q, ZHANG Y, et al. Fabrication and properties of micro-nanoencapsulated phase change materials for internally-cooled liquid desiccant dehumidification[J]. Nanomaterials, 2017, 7(5): 96. |
52 | SANCHEZ L, SANCHEZ P, CARMONA M, et al. Influence of operation conditions on the microencapsulation of PCMs by means of suspension-like polymerization[J]. Colloid and Polymer Science, 2008, 286(8/9): 1019-1027. |
53 | BORREGUERO A M, CARMONA M, SANCHEZ M L, et al. Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio[J]. Applied Thermal Engineering, 2010, 30(10): 1164-1169. |
54 | CHAIYASAT P, ISLAM M Z, CHAIYASAT A. Preparation of poly(divinylbenzene) microencapsulated octadecane by microsuspension polymerization: oil droplets generated by phase inversion emulsification[J]. RSC Advances, 2013, 3(26): 10202. |
55 | SARI A, ALKAN C, KAHRAMAN DÖĞÜŞCÜ D, et al. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2014, 126: 42-50. |
56 | SARI A, ALKAN C, BIÇER A, et al. Micro/nanoencapsulated n-nonadecane with poly(methyl methacrylate) shell for thermal energy storage[J]. Energy Conversion and Management, 2014, 86: 614-621. |
57 | DANG X, YANG M, SHAN Z, et al. On spray drying of oxidized corn starch cross-linked gelatin microcapsules for drug release[J]. Materials Science and Engineering C, 2017, 74: 493-500. |
58 | REN W, TIAN G, ZHAO S, et al. Effects of spray-drying temperature on the physicochemical properties and polymethoxyflavone loading efficiency of citrus oil microcapsules[J]. LWT—Food Science and Technology, 2020, 133: 109954. |
59 | WANG Y, ZHU X, BIE X, et al. Preparation of microcapsules containing antimicrobial lipopeptide from Bacillus amyloliquefaciens ES-2 by spray drying[J]. LWT—Food Science and Technology, 2014, 56(2): 502-507. |
60 | ZUO J, ZHAN J, LUO C, et al. Characteristics and release property of polylactic acid/sodium monofluorophosphate microcapsules prepared by spray drying[J]. Advanced Powder Technology, 2017, 28(11): 2805-2811. |
61 | LEE H, DESHMUKH P R, KIM J H, et al. Spray drying formation of metal oxide (TiO2 or SnO2) nanoparticle coated boron particles in the form of microspheres and their physicochemical properties[J]. Journal of Alloys and Compounds, 2019, 810: 151923. |
62 | NANDIYANTO A B D, OKUYAMA K. Progress in developing spray-drying methods for the production of controlled morphology particles: from the nanometer to submicrometer size ranges[J]. Advanced Powder Technology, 2011, 22(1): 1-19. |
63 | HAWLADER M N A, UDDIN M S, KHIN M M. Microencapsulated PCM thermal-energy storage system[J]. Applied Energy, 2003, 74(1/2): 195-202. |
64 | FEI X, LIU S, ZHANG B, et al. Effect of alkyltriethoxysilane on the performance of sodium silicate-based silica shell phase change microcapsules[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 608: 125503. |
65 | BAE J. Fabrication of carbon microcapsules containing silicon nanoparticles-carbon nanotubes nanocomposite by sol-gel method for anode in lithiumi on battery[J]. Journal of Solid State Chemistry, 2011, 184(7): 1749-1755. |
66 | MAIA F, YASAKAU K A, CARNEIRO J, et al. Corrosion protection of AA2024 by sol-gel coatings modified with MBT-loaded polyurea microcapsules[J]. Chemical Engineering Journal, 2016, 283: 1108-1117. |
67 | QIAN T, DANG B, CHEN Y, et al. Fabrication of magnetic phase change n-eicosane@Fe3O4/SiO2 microcapsules on wood surface via sol-gel method[J]. Journal of Alloys and Compounds, 2019, 772: 871-876. |
68 | FANG G, CHEN Z, LI H. Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials[J]. Chemical Engineering Journal, 2010, 163(1/2): 154-159. |
69 | WU X, FAN M, CUI S, et al. Novel Na2SO4@SiO2 phase change material with core-shell structures for high temperature thermal storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 280-288. |
70 | HE F, WANG X, WU D. New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor[J]. Energy, 2014, 67: 223-233. |
71 | HUO X, LI W, WANG Y, et al. Chitosan composite microencapsulated comb-like polymeric phase change material via coacervation microencapsulation[J]. Carbohydrate Polymers, 2018, 200: 602-610. |
72 | SINGH J, VENNAPUSA J R, CHATTOPADHYAY S. Protein-polysaccharide based microencapsulated phase change material composites for thermal energy storage[J]. Carbohydrate Polymers, 2020, 229: 115531. |
73 | TANGSIRIRATANA E, SKOLPAP W, PATTERSON R J, et al. Thermal properties and behavior of microencapsulated sugarcane wax phase change material[J]. Heliyon, 2019, 5(8): e02184. |
74 | PIACENTINI E, GIORNO L, DRAGOSAVAC M M, et al. Microencapsulation of oil droplets using cold water fish gelatine/gum Arabic complex coacervation by membrane emulsification[J]. Food Research International, 2013, 53(1): 362-372. |
75 | HUANG X, ZHU C, LIN Y, et al. Thermal properties and applications of microencapsulated PCM for thermal energy storage: a review[J]. Applied Thermal Engineering, 2019, 147: 841-855. |
76 | LI Y, ZHANG X, ZHAO Y, et al. Investigation on complex coacervation between fish skin gelatin from cold-water fish and gum Arabic: phase behavior, thermodynamic, and structural properties[J]. Food Research International, 2018, 107: 596-604. |
77 | 海彬, 姜高亮, 芦雷鸣, 等. 复凝聚法制备石蜡相变储能微胶囊及其性能研究[J]. 应用化工, 2018, 47(1): 10-13, 17. |
Bin HAI, JIANG Gaoliang, LU Leiming, et al. Preparation and properties of microencapsulated paraffin phase change material by complex coacervation[J]. Applied Chemical Industry, 2018, 47(1): 10-13, 17. | |
78 | BASAL G, SIRIN DEVECI S, YALCIN D, et al. Properties of n-eicosane-loaded silk fibroin-chitosan microcapsules[J]. Journal of Applied Polymer Science, 2011, 121(4): 1885-1889. |
79 | ZHU X, LI X, SHEN J, et al. Stable microencapsulated phase change materials with ultrahigh payload for efficient cooling of mobile electronic devices[J]. Energy Conversion and Management, 2020, 223: 113478. |
80 | TSUDA N, OHTSUBO T, FUJI M. Preparation of self-bursting microcapsules by interfacial polymerization[J]. Advanced Powder Technology, 2012, 23(6): 724-730. |
81 | YANG J M, KIM J. The microencapsulation of calcium chloride hexahydrate as a phase-change material by using the hybrid coupler of organoalkoxysilanes[J]. Journal of Applied Polymer Science, 2018, 135(6): 45821. |
82 | ZHANG H, WANG X. Synthesis and properties of microencapsulated n-octadecane with polyurea shells containing different soft segments for heat energy storage and thermal regulation[J]. Solar Energy Materials and Solar Cells, 2009, 93(8): 1366-1376. |
83 | LU S, SHEN T, XING J, et al. Preparation, characterization, and thermal stability of double-composition shell microencapsulated phase change material by interfacial polymerization[J]. Colloid and Polymer Science, 2017, 295(10): 2061-2067. |
84 | GUO X, CAO J, PEMG Y, et al. Incorporation of microencapsulated dodecanol into wood flour/high-density polyethylene composite as a phase change material for thermal energy storage[J]. Materials & Design, 2016, 89: 1325-1334. |
85 | SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2): 149-160. |
86 | ZHANG H, WANG X. Fabrication and performances of microencapsulated phase change materials based on n-octadecane core and resorcinol-modified melamine-formaldehyde shell[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009, 332(2/3): 129-138. |
87 | GAO P P, ZHOU Z H, YANG B, et al. Structural regulation of poly(urea-formaldehyde) microcapsules containing lube base oil and their thermal properties[J]. Progress in Organic Coatings, 2021, 150: 105990. |
88 | 华柄宇, 王进美, 刘红媛, 等. 相变点可控的相变微胶囊制备与性能研究[J]. 化工新型材料, 2020, 48(5): 130-134. |
HUA Bingyu, WANG Jinmei, LIU Hongyuan, et al. Preparation and property of phase change microcapsule with controllable phase transition point[J]. New Chemical Materials, 2020, 48(5): 130-134. | |
89 | XU R, XIA X, WANG W, et al. Infrared camouflage fabric prepared by paraffin phase change microcapsule with good thermal insulting properties[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 591: 124519. |
90 | WANG H, LUO J, YANG Y, et al. Fabrication and characterization of microcapsulated phase change materials with an additional function of thermochromic performance[J]. Solar Energy, 2016, 139: 591-598. |
91 | QIU X, LU L, WANG J, et al. Preparation and characterization of microencapsulated n-octadecane as phase change material with different n-butyl methacrylate-based copolymer shells[J]. Solar Energy Materials and Solar Cells, 2014, 128: 102-111. |
92 | WANG Z, MA W, HU D, et al. Synthesis and characterization of microencapsulated methyl laurate with polyurethane shell materials via interfacial polymerization in Pickering emulsions[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 600: 124958. |
93 | LI W, SONG G, TANG G, et al. Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell[J]. Energy, 2011, 36(2): 785-791. |
94 | SU W, DARKWA J, KOKOGIANNAKIS G, et al. Preparation of microencapsulated phase change materials (MEPCM) for thermal energy storage[J]. Energy Procedia, 2017, 121: 95-101. |
95 | MA Y, XIE Q, WANG X, et al. Synthesis and characterization of microencapsulated phase change materials with comb-like acrylic co-polymer shell as thermal energy storage materials[J]. Solar Energy, 2019, 179: 410-423. |
96 | GAO X, ZHAO T, LUO G, et al. Facile method of fabricating microencapsulated phase change materials with compact bonding polymer-silica hybrid shell using TEOS/MPS[J]. Thermochimica Acta, 2018, 659: 183-190. |
97 | ZHAO J, YANG Y, LI Y, et al. Microencapsulated phase change materials with TiO2-doped PMMA shell for thermal energy storage and UV-shielding[J]. Solar Energy Materials and Solar Cells, 2017, 168: 62-68. |
98 | WANG H, LI Y, ZHAO L, et al. A facile approach to synthesize microencapsulated phase change materials embedded with silver nanoparicle for both thermal energy storage and antimicrobial purpose[J]. Energy, 2018, 158: 1052-1059. |
99 | FANG Y, YU H, WAN W, et al. Preparation and thermal performance of polystyrene/n-tetradecane composite nanoencapsulated cold energy storage phase change materials[J]. Energy Conversion and Management, 2013, 76: 430-436. |
100 | ALAY S, GÖDE F, ALKAN C. Synthesis and thermal properties of poly(n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics[J]. Journal of Applied Polymer Science, 2011, 120(5): 2821-2829. |
101 | KOJIMA R, HIDAKA S, TAIRA M, et al. Preparation of liquid crystal nanocapsules by polymerization of oil-in-water emulsion monomer droplets[J]. Journal of Colloid and Interface Science, 2020, 563: 122-130. |
102 | ALKAN C, SARı A, KARAIPEKLI A. Preparation, thermal properties and thermal reliability of microencapsulated n-eicosane as novel phase change material for thermal energy storage[J]. Energy Conversion and Management, 2011, 52(1): 687-692. |
103 | 吴克刚, 柴向华. 单细胞AA油喷雾干燥微胶囊化壁材包埋性能的研究[J]. 高校化学工程学报, 2008, 22(5): 797-802. |
WU Kegang, CHAI Xianghua. Performance of various shell materials for microencapsulation of single cell oil rich in arachidonic acid by spray drying[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(5): 797-802. | |
104 | 单新丽, 王建平, 刘妍, 等. 丙烯酸共聚物囊壁的正十八烷微胶囊的制备和性能表征[J]. 物理化学学报, 2009, 25(12): 2590-2596. |
SHAN Xinli, WANG Jianping, LIU Yan, et al. Fabrication and characterization of microencapsulated n-octadecane with an acrylic co-polymeric shell[J]. Acta Physico-Chimica Sinica, 2009, 25(12): 2590-2596. | |
105 | 胡荣荣, 李凤艳, 张世杰, 等. 聚甲基丙烯酸甲酯/石蜡微胶囊的制备与性能[J]. 石油化工高等学校学报, 2019, 32(3): 14-19. |
HU Rongrong, LI Fengyan, ZHANG Shijie, et al. Fabrication and characterization of microencapsulated paraffin with methyl methacrylate-based polymer shell[J]. Journal of Petrochemical Universities, 2019, 32(3): 14-19. | |
106 | 丁泽, 陈昭朋, 张凯, 等. 相变微胶囊/环氧树脂复合泡沫的制备及性能[J]. 高分子材料科学与工程, 2019, 35(1): 136-141. |
DING Ze, CHEN Zhaopeng, ZHANG Kai, et al. Preparation and properties of phase change microcapsule/epoxy resin composite foam[J]. Polymer Materials Science & Engineering, 2019, 35(1): 136-141. | |
107 | 俞滨滨, 裴克梅. 自调温涂料用石蜡相变微胶囊的制备与性能分析[J]. 浙江理工大学学报(自然科学版), 2020, 43(5): 602-608. |
YU Binbin, PEI Kemei. Preparation and properties of paraffin phase change microcapsules for temperature auto-adjusting coatings[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2020, 43(5): 602-608. | |
108 | 杨颖旎, 尚丽娜, 赵俊淇, 等. 聚氨酯相变储能微胶囊的制备及性能表征[J]. 化工新型材料, 2019, 47(12): 91-94. |
YANG Yingni, SHANG Lina, ZHAO Junqi, et al. Preparation and characterization of polyurethane phase change energy storage microcapsules[J]. New Chemical Materials, 2019, 47(12): 91-94. | |
109 | WANG X, LI C, ZHAO T. Fabrication and characterization of poly(melamine-formaldehyde)/silicon carbide hybrid microencapsulated phase change materials with enhanced thermal conductivity and light-heat performance[J]. Solar Energy Materials and Solar Cells, 2018, 183: 82-91. |
110 | 苏永丽. 二氧化硅/壳聚糖/石蜡相变微胶囊的制备和性能[D]. 南京: 东南大学, 2016. |
SU Yongli. Preparation and properties of silica/chitosan/paraffin phase change microcapsules[D]. Nanjing: Southeast University, 2016. | |
111 | ZUO J D, DONG B Q, XING F, et al. Preparation of polystyrene/sodium monofluorophosphate microcapsules by W/O/W solvent evaporation method[J]. Advanced Powder Technology, 2016, 27(4): 1086-1092. |
112 | LIU H, WANG Y, LI D, et al. Preparation and characterization of poly(melamine-formaldehyde) microcapsules filled with propisochlor[J]. Journal of Macromolecular Science, Part A, 2019, 56(7): 676-685. |
113 | ZHANG Y, WANG K, TAO W, et al. Preparation of microencapsulated phase change materials used graphene oxide to improve thermal stability and its incorporation in gypsum materials[J]. Construction and Building Materials, 2019, 224: 48-56. |
114 | 鲁进利, 李洋, 韩亚芳, 等. 丙烯酸树脂-正十二烷醇相变微胶囊制备及性能表征[J]. 过程工程学报, 2019, 19(3): 617-622. |
LU Jinli, LI Yang, HAN Yafang, et al. Preparation and properties characterization of microencapsulated phase change materials using acrylic resin copolymers/n-dodecanol[J]. The Chinese Journal of Process Engineering, 2019, 19(3): 617-622. | |
115 | 张艳辉, 邓建国, 黄奕刚. 乙二醇双硬脂酸酯/PMMA核壳储能微胶囊制备[J]. 化工进展, 2012, 31(3): 580-585. |
ZHANG Yanhui, DENG Jianguo, HUANG Yigang. Preparation of phase change material EGDS/PMMA core-shell microcapsules[J]. Chemical Industry and Engineering Progress, 2012, 31(3): 580-585. | |
116 | YANG J, KELLER M W, MOORE J S, et al. Microencapsulation of isocyanates for self-healing polymers[J]. Macromolecules, 2008, 41(24): 9650-9655. |
117 | MA Y, LU P, CHEN W, et al. Preparation of isocyanate microcapsules as functional crosslinking agent by minimalist interfacial polymerization[J]. Advanced Powder Technology, 2019, 30(10): 1995-2002. |
118 | FRANÇA D, MEDINA Â F, MESSA L L, et al. Chitosan spray-dried microcapsule and microsphere as fertilizer host for swellable-controlled release materials[J]. Carbohydrate Polymers, 2018, 196: 47-55. |
119 | STROBEL S A, HUDNALL K, ARBAUGH B, et al. Stability of fish oil in calcium alginate microcapsules cross-linked by in situ internal gelation during spray drying[J]. Food and Bioprocess Technology, 2020, 13(2): 275-287. |
120 | ZHANG X X, FAN Y F, TAO X M, et al. Crystallization and prevention of supercooling of microencapsulated n-alkanes[J]. Journal of Colloid and Interface Science, 2005, 281(2): 299-306. |
121 | 许明明, 赵立功, 李建立, 等. 辐射余热回收用相变微胶囊的制备与表征[J]. 广州化工, 2020, 48(7): 61-64. |
XU Mingming, ZHAO Ligong, LI Jianli, et al. Preparation and characterization of phase change microcapsules for radiation waste heat recovery[J]. Guangzhou Chemical Industry, 2020, 48(7): 61-64. | |
122 | 周青春, 张金枝, 邹其超. 滞后低温相变储能微胶囊的制备和性能研究[J]. 胶体与聚合物, 2019, 37(2): 58-61. |
ZHOU Qingchun, ZHANG Jinzhi, ZOU Qichao. Preparation and properties of hysteresis low temperature phase change energy storage microcapsules[J]. Chinese Journal of Colloid & Polymer, 2019, 37(2): 58-61. | |
123 | HU X, ZHANG Y. Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux[J]. International Journal of Heat and Mass Transfer, 2002, 45(15): 3163-3172. |
124 | 邹得球, 马先锋, 刘小诗, 等. 石墨烯在相变材料中的研究进展[J]. 化工进展, 2017, 36(5): 1743-1754. |
ZOU Deqiu, MA Xianfeng, LIU Xiaoshi, et al. Research progress on graphene in phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1743-1754. | |
125 | NAZIR H, BATOOL M, BOLIVAR OSORIO F J, et al. Recent developments in phase change materials for energy storage applications: a review[J]. International Journal of Heat and Mass Transfer, 2019, 129: 491-523. |
126 | LIN S C, AL-KAYIEM H H. Evaluation of copper nanoparticles-Paraffin wax compositions for solar thermal energy storage[J]. Solar Energy, 2016, 132: 267-278. |
127 | HO C J, LEE C Y, YAMADA M. Experiments on laminar cooling characteristics of a phase change nanofluid flow through an iso-flux heated circular tube[J]. International Journal of Heat and Mass Transfer, 2018, 118: 1307-1315. |
128 | LI W, WAN H, LOU H, et al. Enhanced thermal management with microencapsulated phase change material particles infiltrated in cellular metal foam[J]. Energy, 2017, 127: 671-679. |
129 | LI W Q, WAN H, JING T T, et al. Microencapsulated phase change material (MEPCM) saturated in metal foam as an efficient hybrid PCM for passive thermal management: a numerical and experimental study[J]. Applied Thermal Engineering, 2019, 146: 413-421. |
130 | EISAPOUR M, EISAPOUR A H, HOSSEINI M J, et al. Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid[J]. Applied Energy, 2020, 266: 114849. |
131 | 张冠华, 俞臻杰, 崔国民, 等. 相变微胶囊悬浮液强制对流换热实验研究[J]. 热能动力工程, 2019, 34(6): 147-154. |
ZHANG Guanhua, YU Zhenjie, CUI Guomin, et al. An experimental investigation of forced convection heat transfer with novel microencapsulated phase change material slurries[J]. Journal of Engineering for Thermal Energy and Power, 2019, 34(6): 147-154. | |
132 | CHEN B, WANG X, ZENG R, et al. An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux[J]. Experimental Thermal and Fluid Science, 2008, 32(8): 1638-1646. |
133 | CHUNG U S, MIN J H, LEE P C, et al. Polyurethane matrix incorporating PDMS-based self-healing microcapsules with enhanced mechanical and thermal stability[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 518: 173-180. |
134 | LU S, SHEN T, XING J, et al. Preparation and characterization of cross-linked polyurethane shell microencapsulated phase change materials by interfacial polymerization[J]. Materials Letters, 2018, 211: 36-39. |
135 | NOMURA T, YOOLERD J, SHENG N, et al. Al/Al2O3 core/shell microencapsulated phase change material for high-temperature applications[J]. Solar Energy Materials and Solar Cells, 2019, 193: 281-286. |
136 | JEONG S G, JEON J, SEO J, et al. Performance evaluation of the microencapsulated PCM for wood-based flooring application[J]. Energy Conversion and Management, 2012, 64: 516-521. |
137 | NAVARRO L, SOLÉ A, MARTÍN M, et al. Benchmarking of useful phase change materials for a building application[J]. Energy and Buildings, 2019, 182: 45-50. |
138 | 周玉帅, 赵敬德, 董晓丽. 微胶囊相变材料蓄冷系统分析与比较[J]. 发电与空调, 2012, 33(1): 61-64. |
ZHOU Yushuai, ZHAO Jingde, DONG Xiaoli. Comparison and analysis of exergy about MPCM slurry storage system[J]. Power Generation & Air Condition, 2012, 33(1): 61-64. | |
139 | CAO V D, PILEHVAR S, SALAS-BRINGAS C, et al. Thermal analysis of geopolymer concrete walls containing microencapsulated phase change materials for building applications[J]. Solar Energy, 2019, 178: 295-307. |
140 | JEONG S G, CHANG S J, WI S, et al. Development and performance evaluation of heat storage paint with MPCM for applying roof materials as basic research[J]. Energy and Buildings, 2016, 112: 62-68. |
141 | SHI X J, ZHANG P. A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system[J]. Applied Energy, 2013, 112: 1393-1402. |
142 | ZHAI X Q, WANG X L, WANG T, et al. A review on phase change cold storage in air-conditioning system: materials and applications[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 108-120. |
143 | ZHENG L, ZHANG W, LIANG F. Experiment study on thermal conductivity of microcapsule phase change suspension applied to solar powered air conditioning cold storage system[J]. Procedia Engineering, 2017, 205: 1237-1244. |
144 | SARIER N, ONDER E. The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J]. Thermochimica Acta, 2007, 452(2): 149-160. |
145 | 阎若思, 王瑞, 刘星. 相变材料微胶囊在蓄热调温智能纺织品中的应用[J]. 纺织学报, 2014, 35(9): 155-164. |
YAN Ruosi, WANG Rui, LIU Xing. Application of microencapsulated phase-change materials in intelligent heat-storage and thermo-regulated textile[J]. Journal of Textile Research, 2014, 35(9): 155-164. | |
146 | YEERKEN T, YU W, FENG J, et al. Durable superamphiphobic aramid fabrics modified by PTFE and FAS for chemical protective clothing[J]. Progress in Organic Coatings, 2019, 135: 41-50. |
147 | BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Analysis of thermoregulation properties of PCM garments on the basis of ergonomic tests[J]. Textile Research Journal, 2013, 83(2): 148-159. |
148 | SUN Z, ZHAO L, WAN H, et al. Construction of polyaniline/carbon nanotubes-functionalized phase-change microcapsules for thermal management application of supercapacitors[J]. Chemical Engineering Journal, 2020, 396: 125317. |
149 | JIN Z G, WANG Y, LIU J G, et al. Synthesis and properties of paraffin capsules as phase change materials[J]. Polymer, 2008, 49(12): 2903-2910. |
150 | NG D Q, TSENG Y L, SHIH Y F, et al. Synthesis of novel phase change material microcapsule and its application[J]. Polymer, 2017, 133: 250-262. |
151 | 郝立才, 肖红, 刘卫, 等. 防热红外侦视纺织品的研究进展[J]. 纺织学报, 2014, 35(7): 158-164. |
HAO Licai, XIAO Hong, LIU Wei, et al. Research development of thermal infrared camouflage textiles[J]. Journal of Textile Research, 2014, 35(7): 158-164. | |
152 | 贾其, 吕绪良, 荣先辉, 等. 添加相变材料的混凝土路面红外伪装应用研究[J]. 兵工学报, 2011, 32(8): 975-980. |
JIA Qi, Xuliang LYU, RONG Xianhui, et al. Application of concrete with phase-change materials in pavement infrared camouflage[J]. Acta Armamentarii, 2011, 32(8): 975-980. | |
153 | 郭军红, 邵竞尧, 包雪梅, 等. 吸波-相变微胶囊/环氧树脂红外微波隐身涂料[J]. 涂料工业, 2017, 47(11): 28-35. |
GUO Junhong, SHAO Jingyao, BAO Xuemei, et al. Study on RAM-MCPCM/epoxy compatible stealth coating[J]. Paint & Coatings Industry, 2017, 47(11): 28-35. | |
154 | BAL L M, SATYA S, NAIK S N. Solar dryer with thermal energy storage systems for drying agricultural food products: a review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(8): 2298-2314. |
155 | PATEL S K, BADE M H. Energy targeting and process integration of spray dryer with heat recovery systems[J]. Energy Conversion and Management, 2020, 221: 113148. |
156 | SERALE G, GOIA F, PERINO M. Numerical model and simulation of a solar thermal collector with slurry Phase Change Material (PCM) as the heat transfer fluid[J]. Solar Energy, 2016, 134: 429-444. |
157 | LIU L, JIA Y, LIN Y, et al. Performance evaluation of a novel solar photovoltaic-thermal collector with dual channel using microencapsulated phase change slurry as cooling fluid[J]. Energy Conversion and Management, 2017, 145: 30-40. |
158 | MUÑOZ-SÁNCHEZ B, IPARRAGUIRRE-TORRES I, MADINA-ARRESE V, et al. Encapsulated high temperature PCM as active filler material in a thermocline-based thermal storage system[J]. Energy Procedia, 2015, 69: 937-946. |
159 | 张方, 胥建群, 黄喜军. 基于PCMS流动和传热特性凝汽器的节水节能研究[J]. 中国电机工程学报, 2017, 37(10): 2905-2912. |
ZHANG Fang, XU Jianqun, HUANG Xijun. Research on water and energy conservation of the condenser based on characteristics of flow and heat transfer of PCMS[J]. Proceedings of the Chinese Society for Electrical Engineering, 2017, 37(10): 2905-2912. |
[1] | CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian. Preparation of platinum based nanocatalysts and their recent progress in hydrogenation [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915. |
[2] | Mingsheng LUO, Xuleng FENG, Dan SONG, Zhi YANG, Yatao WANG, Hongjuan LI. Effect of preparation methods on Fischer-Tropsch iron catalystsusing FeC2O4 [J]. Chemical Industry and Engineering Progress, 2020, 39(6): 2422-2429. |
[3] | LI Zhaoning, ZHAO Yanjie, FAN Yaru. Research progress of phase change cold storage slurry materials [J]. Chemical Industry and Engineering Progress, 2018, 37(S1): 108-116. |
[4] | ZHAN Hongren, HUI Yao, WU Zhong. Research progress on heat transfer enhancement in closed thermosyphon [J]. Chemical Industry and Engineering Progress, 2017, 36(08): 2764-2775. |
[5] | WANG Caihong, CHEN Shuoran, YE Changqing, WANG Xiaomei. Research progress on monodisperse Fe3O4 magnetic nanoparticles [J]. Chemical Industry and Engineering Progree, 2016, 35(S1): 242-247. |
[6] | ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, WANG Shunwu, LIU Lixin. Research progress in fabrication and application of bioinspired super-hydrophobic surface [J]. Chemical Industry and Engineering Progree, 2016, 35(09): 2818-2829. |
[7] | XU Yanfang, LIU Hao, LI Xiaojiu. Research progress of ordered nanoporous anodic alumina fabrication methods [J]. Chemical Industry and Engineering Progree, 2015, 34(12): 4265-4271. |
[8] |
OU Jianxiong,LAN Zhili,YIN Dulin,YANG Chunhua,OU Lanying.
Influence of preparation methods of Cu/Cr catalyst for hydrogenolysis of glycerol [J]. Chemical Industry and Engineering Progree, 2010, 29(4): 659-. |
[9] | MA Wenbao,ZHANG Lizhi. Progress of biomimic membranes [J]. Chemical Industry and Engineering Progree, 2007, 26(11): 1538-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |