Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5214-5221.DOI: 10.16085/j.issn.1000-6613.2021-0553
Previous Articles Next Articles
LI Qing1,2(), LIU Wujun1, GUO Xiaojia1, WANG Qian1, ZHAO Zongbao1(
)
Received:
2021-03-30
Revised:
2021-04-29
Online:
2021-09-13
Published:
2021-09-05
Contact:
ZHAO Zongbao
李青1,2(), 刘武军1, 郭潇佳1, 王倩1, 赵宗保1(
)
通讯作者:
赵宗保
作者简介:
李青(1990—),女,博士研究生,研究方向为化学生物学。E-mail:基金资助:
CLC Number:
LI Qing, LIU Wujun, GUO Xiaojia, WANG Qian, ZHAO Zongbao. Chiral NAD analogs as cofactors for biocatalysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5214-5221.
李青, 刘武军, 郭潇佳, 王倩, 赵宗保. 手性NAD类似物合成及其辅酶应用[J]. 化工进展, 2021, 40(9): 5214-5221.
辅因子 | Km/mmol?L-1 | Kcat/s-1 | (Kcat?Km)/mmol-1?L?s-1 |
---|---|---|---|
L-PheNAH① | 0.40±0.06 | 0.07±0.00 | 0.17±0.02 |
D-PheNDH① | 1.06±0.13 | 0.06±0.00 | 0.05±0.00 |
3S-PheNAH① | 0.41±0.11 | 0.02±0.00 | 0.04±0.01 |
3R-PheNAH① | 0.22±0.07 | 0.00±0.00 | 0.01±0.00 |
BNAH① | 0.23±0.04 | 0.10±0.01 | 0.42±0.05 |
β-NADH① | 0.27±0.06 | 0.21±0.01 | 0.78±0.12 |
BNAH② | 0.07±0.01 | 0.09±0.00 | 1.25±0.11 |
β-NADH② | 0.16±0.03 | 0.20±0.01 | 1.31±0.18 |
辅因子 | Km/mmol?L-1 | Kcat/s-1 | (Kcat?Km)/mmol-1?L?s-1 |
---|---|---|---|
L-PheNAH① | 0.40±0.06 | 0.07±0.00 | 0.17±0.02 |
D-PheNDH① | 1.06±0.13 | 0.06±0.00 | 0.05±0.00 |
3S-PheNAH① | 0.41±0.11 | 0.02±0.00 | 0.04±0.01 |
3R-PheNAH① | 0.22±0.07 | 0.00±0.00 | 0.01±0.00 |
BNAH① | 0.23±0.04 | 0.10±0.01 | 0.42±0.05 |
β-NADH① | 0.27±0.06 | 0.21±0.01 | 0.78±0.12 |
BNAH② | 0.07±0.01 | 0.09±0.00 | 1.25±0.11 |
β-NADH② | 0.16±0.03 | 0.20±0.01 | 1.31±0.18 |
辅因子 | 酶活/U?mg-1 | 辅因子 | 酶活/U?mg-1 |
---|---|---|---|
L-PheNA | — | D-PheNA | — |
3S-PheNA | — | 3R-PheNA | — |
BNA | 1.7×10-3 | β-NAD | 0.84 |
辅因子 | 酶活/U?mg-1 | 辅因子 | 酶活/U?mg-1 |
---|---|---|---|
L-PheNA | — | D-PheNA | — |
3S-PheNA | — | 3R-PheNA | — |
BNA | 1.7×10-3 | β-NAD | 0.84 |
1 | XIAO W S, WANG R S, HANDY D E, et al. NAD(H) and NADP(H) redox couples and cellular energy metabolism[J]. Antioxidants & Redox Signaling, 2018, 28(3): 251-272. |
2 | MIYAKE Y, NAKAMURA Y, TAKAYAMA N, et al. Alpha reduced nicotinamide adenine dinucleotide-dependent reductase reactions of rat liver microsomes[J]. Journal of Biochemistry, 1975, 78(4): 773-783. |
3 | IZAGUIRRE G, PIETRUSZKO R, CHO S, et al. Human aldehyde dehydrogenase catalytic activity and structural interactions with coenzyme analogs[J]. Journal of Biomolecular Structure and Dynamics, 2001, 19(3): 429-447. |
4 | PARRY R J, HOYT J C. Purification and preliminary characterization of (E)-3-(2, 4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin[J]. Journal of Bacteriology, 1997, 179(4): 1385-1392. |
5 | STEVENS L A, KATO J, KASAMATSU A, et al. The ARH and macrodomain families of α-ADP-ribose-acceptor hydrolases catalyze α-NAD+Hydrolysis[J]. ACS Chemical Biology, 2019, 14(12): 2576-2584. |
6 | SCHMIDT M T, SMITH B C, JACKSON M D, et al. Coenzyme specificity of sir2 protein deacetylases: implications for physiological regulation[J]. Journal of Biological Chemistry, 2004, 279(38): 40122-40129. |
7 | DE FLORA A, GUIDA L, FRANCO L, et al. Ectocellular in vitro and in vivo metabolism of cADP-ribose in cerebellum[J]. The Biochemical Journal, 1996, 320 (Pt 2): 665-671. |
8 | BEAUPRE B A, HOAG M R, CARMICHAEL B R, et al. Kinetics and equilibria of the reductive and oxidative half-reactions of human renalase with α-NADPH[J]. Biochemistry, 2013, 52(49): 8929-8937. |
9 | BEAUPRE B A, CARMICHAEL B R, HOAG M R, et al. Renalase is an α-NAD(P)H oxidase/anomerase[J]. Journal of the American Chemical Society, 2013, 135(37): 13980-13987. |
10 | COHEN M S, CHANG P. Insights into the biogenesis, function, and regulation of ADP-ribosylation[J]. Nature Chemical Biology, 2018, 14(3): 236-243. |
11 | PAUL C E, ARENDS I W C E, HOLLMANN F. Is simpler better? synthetic nicotinamide cofactor analogues for redox chemistry[J]. ACS Catalysis, 2014, 4(3): 788-797. |
12 | PAUL C E, HOLLMANN F. A survey of synthetic nicotinamide cofactors in enzymatic processes[J]. Applied Microbiology and Biotechnology, 2016, 100(11): 4773-4778. |
13 | ZACHOS I, NOWAK C, SIEBER V. Biomimetic cofactors and methods for their recycling[J]. Current Opinion in Chemical Biology, 2019, 49: 59-66. |
14 | HALLÉ F, FIN A, ROVIRA A R, et al. Emissive synthetic cofactors: enzymatic interconversions of tzA analogues of ATP, NAD+, NADH, NADP+, and NADPH[J]. Angewandte Chemie International Edition, 2018, 57(4): 1087-1090. |
15 | WANG L, JI D B, LIU Y X, et al. Synthetic cofactor-linked metabolic circuits for selective energy transfer[J]. ACS Catalysis, 2017, 7(3): 1977-1983. |
16 | ROVIRA A R, FIN A, TOR Y. Emissive synthetic cofactors: an isomorphic, isofunctional, and responsive NAD+ analogue[J]. Journal of the American Chemical Society, 2017, 139(44): 15556-15559. |
17 | DAI Z F, ZHANG X N, NASERTORABI F, et al. Facile chemoenzymatic synthesis of a novel stable mimic of NAD[J]. Chemical Science, 2018, 9(44): 8337-8342. |
18 | BLACK W B, ZHANG L Y, MAK W S, et al. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis[J]. Nature Chemical Biology, 2020, 16(1): 87-94. |
19 | LIU W J, WU S G, HOU S H, et al. Synthesis of phosphodiester-type nicotinamide adenine dinucleotide analogs[J]. Tetrahedron, 2009, 65(40): 8378-8383. |
20 | 侯淑华, 刘武军, 赵宗保. 新型烟酰胺腺嘌呤二核苷酸(NAD)类似物的合成及其辅酶活性[J]. 有机化学, 2012, 32(2): 349-353. |
HOU Shuhua, LIU Wujun, ZHAO Zongbao. Synthesis of novel nicotinamide adenine dinucleotide (NAD) analogs and their coenzyme activities[J]. Chinese Journal of Organic Chemistry, 2012, 32(2): 349-353. | |
21 | FRIEDLOS F, JARMAN M, DAVIES L C, et al. Identification of novel reduced pyridinium derivatives as synthetic co-factors for the enzyme DT diaphorase (NAD(P)H dehydrogenase (quinone), EC 1.6.99.2)[J]. Biochemical Pharmacology, 1992, 44(1): 25-31. |
22 | NOWAK C, PICK A, LOMMES P, et al. Enzymatic reduction of nicotinamide biomimetic cofactors using an engineered glucose dehydrogenase: providing a regeneration system for artificial cofactors[J]. ACS Catalysis, 2017, 7(8): 5202-5208. |
23 | LO H C, FISH R H. Biomimetic NAD+ models for tandem cofactor regeneration, horse liver alcohol dehydrogenase recognition of 1, 4-NADH derivatives, and chiral synthesis[J]. Angewandte Chemie, 2002, 114(3): 496-499. |
24 | RYAN J D, FISH R H, CLARK D S. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1, 4-NADH cofactors[J]. ChemBioChem, 2008, 9(16): 2579-2582. |
25 | LUTZ J, HOLLMANN F, HO T V, et al. Bioorganometallic chemistry: biocatalytic oxidation reactions with biomimetic NAD+/NADH co-factors and [Cp*Rh(bpy)H]+ for selective organic synthesis[J]. Journal of Organometallic Chemistry, 2004, 689(25): 4783-4790. |
26 | OKAMOTO Y, KÖHLER V, PAUL C E, et al. Efficient in situ regeneration of NADH mimics by an artificial metalloenzyme[J]. ACS Catalysis, 2016, 6(6): 3553-3557. |
27 | PAUL C E, GARGIULO S, OPPERMAN D J, et al. Mimicking nature: synthetic nicotinamide cofactors for C=C bioreduction using enoate reductases[J]. Organic Letters, 2013, 15(1): 180-183. |
28 | MAKAROV M V, MIGAUD M E. Syntheses and chemical properties of β-nicotinamide riboside and its analogues and derivatives[J]. Beilstein Journal of Organic Chemistry, 2019, 15: 401-430. |
29 | MADERN J M, KIM R Q, MISRA M, et al. Synthesis of stable NAD+ mimics as inhibitors for the legionella pneumophila phosphoribosyl ubiquitylating enzyme SdeC[J]. ChemBioChem, 2020, 21(20): 2903-2907. |
30 | DEPAIX A, KOWALSKA J. NAD analogs in aid of chemical biology and medicinal chemistry[J]. Molecules, 2019, 24(22): 4187. |
31 | JI D, WANG L, HOU S, et al. Creation of bioorthogonal redox systems depending on nicotinamide flucytosine dinucleotide[J]. Journal of the American Chemical Society, 2011, 133(51): 20857-20862. |
32 | CHENG W C, KURTH M J. The zincke reaction. A review[J]. Organic Preparations and Procedures International, 2002, 34(6): 585-608. |
33 | WALT D R, FINDEIS M A, RIOS-MERCADILLO V M, et al. An efficient chemical and enzymic synthesis of nicotinamide adenine dinucleotide (NAD+)[J]. Journal of the American Chemical Society, 1984, 106(1): 234-239. |
34 | IKBAL M, CERCEAU C, GOFFIC F, et al. Synthesis of the two enantiomers of the carbocyclic analog of nicotinamide ribose and analysis of their biological properties[J]. European Journal of Medical Chemistry, 1989, 24(4): 415-420. |
35 | HOCKOVÁ D, HOLÝ A. Synthesis of some “abbreviated” NAD+ analogues[J]. Collection of Czechoslovak Chemical Communications, 1997, 62(6): 948-956. |
36 | HOCKOVÁ D, VOTAVOVÁ H, HOLÝ A. Synthesis and chiroptical properties of some abbreviated NAD+ analogues[J]. Tetrahedron: Asymmetry, 1995, 6(9): 2375-2384. |
37 | SCHWANEBERG U, SCHMIDT-DANNERT C, SCHMITT J, et al. A continuous spectrophotometric assay for P450 BM-3, a fatty acid hydroxylating enzyme, and its mutant F87A[J]. Analytical Biochemistry, 1999, 269(2): 359-366. |
38 | CARELLI V, LIBERATORE F, SCIPIONE L, et al. Dithionite adducts of pyridinium salts: regioselectivity of formation and mechanisms of decomposition[J]. Tetrahedron, 2005, 61(43): 10331-10337. |
39 | ZHANG R Z, XU Y, XIAO R. Redesigning alcohol dehydrogenases/reductases for more efficient biosynthesis of enantiopure isomers[J]. Biotechnology Advances, 2015, 33(8): 1671-1684. |
[1] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[2] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[3] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[4] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[5] | TANG Wenxiu, WANG Xueming, GUO Liang, JI Lihao, GAO Cong, CHEN Xiulai, LIU Liming. Metabolic engineering of Escherichia coli to produce succinic acid [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 938-950. |
[6] | LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052. |
[7] | LI Qingyuan, WANG Chao, XU Shipei, ZHANG Xueqin, QIU Mingjian, LIU Mengyao, CONG Mengxiao. Research progress on reaction process and catalysts for PBS precursor of 1,4-butanediol synthesis [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5771-5782. |
[8] | JU Shuyun, WU Jianping, YANG Lirong. Advances in the molecular modification and application of D-amino acid oxidase [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1215-1225. |
[9] | ZHANG Xiaojian, LIU Qian, LIU Zhiqiang, ZHENG Yuguo. Stereoselective carbonyl reductases and their application in chiral alcohols synthesis [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1142-1160. |
[10] | Zhufan LIN, Shao’an CHENG, Zhengzhong MAO, Ruonan GU, Jiawei YANG. Recent advances in the construction and influencing factors of bio-electrochemical nitrogen removal systems [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3766-3776. |
[11] | Cheng ZHU,Guochao XU,Wei DAI,Jieyu ZHOU,Ye NI. Effect of position 127 on the activity and enantioselectivity of alcohol dehydrogenase KpADH [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5504-5511. |
[12] | Tian JIANG, Xudong FENG, Yan LI, Chu LI. The biocatalysis and enzyme modification of substrate specificity [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 606-614. |
[13] | YU Bo, LIU Chao, LIU Jindong, DING Wanyu, CHAI Weiping. Preparation of mesoporous zirconium phosphate and its catalytic performace in the preparation of cellulose from glucose [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2236-2241. |
[14] | YAN Xingchen, ZHAO Qianru, WANG Kaifeng, GUO Yuxin, JIANG Ling, HUANG He. Auto-induced expression of trehalose synthetase and novel process for catalytic production of trehalose [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1949-1955. |
[15] | WANG Rui, XU Yaohui, WANG Kewei, WU Minchen. Expression of PvEH3,a Phaseolus vulgaris epoxide hydrolase,and synthesis of chiral vicinal diols [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1933-1939. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 684
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 363
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |