Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 5107-5117.DOI: 10.16085/j.issn.1000-6613.2021-0673
Previous Articles Next Articles
MA Lei1(), ZHANG Feifei1, SONG Zhiqiang1, YANG Jiangfeng1,2(), LI Libo1,2, LI Jinping1,2
Received:
2021-03-31
Revised:
2021-05-13
Online:
2021-09-13
Published:
2021-09-05
Contact:
YANG Jiangfeng
马蕾1(), 张飞飞1, 宋志强1, 杨江峰1,2(), 李立博1,2, 李晋平1,2
通讯作者:
杨江峰
作者简介:
马蕾(1995—),男,硕士研究生,研究方向为甲烷脱氮。E-mail:基金资助:
CLC Number:
MA Lei, ZHANG Feifei, SONG Zhiqiang, YANG Jiangfeng, LI Libo, LI Jinping. Development of metal-organic frameworks in adsorptive separation of CH4-N2[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5107-5117.
马蕾, 张飞飞, 宋志强, 杨江峰, 李立博, 李晋平. 金属有机骨架材料用于吸附分离CH4和N2的研究进展[J]. 化工进展, 2021, 40(9): 5107-5117.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0673
1 | LASHOF D A, AHUJA D R. Relative contributions of greenhouse gas emissions to global warming[J]. Nature, 1990, 344(6266): 529-531. |
2 | DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews, 2019, 48(10): 2783-2828. |
3 | CROSSON E R. A cavity ring-down analyzer for measuring atmospheric levels of methane, carbon dioxide, and water vapor[J]. Applied Physics B, 2008, 92(3): 403-408. |
4 | 冯明, 陈力, 徐承科, 等. 中国煤层气资源与可持续发展战略[J]. 资源科学, 2007, 29(3): 100-104. |
FENG Ming, CHEN Li, XU Chengke, et al. Coal-bed methane resources and sustainable development in China[J]. Resources Science, 2007, 29(3): 100-104. | |
5 | FLORES R M. Coalbed methane: from hazard to resource[J]. International Journal of Coal Geology, 1998, 35(1/2/3/4): 3-26. |
6 | YANG J F, WANG Y, LI L B, et al. Protection of open-metal V(Ⅲ) sites and their associated CO2/CH4/N2/O2/H2O adsorption properties in mesoporous V-MOFs[J]. Journal of Colloid and Interface Science, 2015, 456: 197-205. |
7 | 杨江峰. 基于低浓煤层气CH4/N2吸附分离微孔材料的合成及其性能研究[D]. 太原:太原理工大学,2012. |
YANG Jiangfeng. Rcscarch on the properties and synthesis of microporous materials based on the CH4/N2 adsorption separation in the low enriched coalbed methane[D]. Taiyuan: Taiyuan University of Technology, 2012. | |
8 | WEN H M, LI B, LI L B, et al. A metal-organic framework with optimized porosity and functional sites for high gravimetric and volumetric methane storage working capacities[J]. Advanced Materials, 2018, 30(16): 1704792. |
9 | JIANG J C, FURUKAWA H, ZHANG Y B, et al. High methane storage working capacity in metal-organic frameworks with acrylate links[J]. Journal of the American Chemical Society, 2016, 138(32): 10244-10251. |
10 | PENG Y, KRUNGLEVICIUTE V, ERYAZICI I, et al. Methane storage in metal-organic frameworks: current records, surprise findings, and challenges[J]. Journal of the American Chemical Society, 2013, 135(32): 11887-11894. |
11 | YANG B, XU E L, LI M. Purification of coal mine methane on carbon molecular sieve by vacuum pressure swing adsorption[J]. Separation Science and Technology, 2016, 51(6): 909-916. |
12 | JAYARAMAN A, HERNANDEZ-MALDONADO A J, YANG R T, et al. Clinoptilolites for nitrogen/methane separation[J]. Chemical Engineering Science, 2004, 59(12): 2407-2417. |
13 | ÁGUEDA MATÉ V I, DELGADO DOBLADEZ J A, ÁLVAREZ-TORRELLAS S, et al. Modeling and simulation of the efficient separation of methane/nitrogen mixtures with [Ni3(HCOO)6] MOF by PSA[J]. Chemical Engineering Journal, 2019, 361: 1007-1018. |
14 | 杨江峰,赵强,于秋红,等.煤层气回收及CH4/N2分离PSA材料的研究进展[J]. 化工进展, 2011, 30(4): 793-801. |
YANG Jiangfeng, ZHAO Qiang, YU Qiuhong, et al. Progress of recovery of coal bed methane and adsorption materials for separation of CH4/N2 by pressure swing adsorption[J]. Chemical Industry and Engineering Progress, 2011, 30(4): 793-801. | |
15 | 李立博. 基于甲烷氮气分离的柔性金属有机骨架(MOFs)性能及拓展研究[D]. 太原: 太原理工大学, 2015. |
LI Libo. Research on the properties and extensions of flexible metal-organic frameworks based on CH4/N2 separation[D]. Taiyuan: Taiyuan University of Technology, 2015. | |
16 | BHADRA S J, FAROOQ S. Separation of methane-nitrogen mixture by pressure swing adsorption for natural gas upgrading[J]. Industrial & Engineering Chemistry Research, 2011, 50(24): 14030-14045. |
17 | ZHANG B Y, WU Q. Thermodynamic promotion of tetrahydrofuran on methane separation from low-concentration coal mine methane based on hydrate[J]. Energy & Fuels, 2010, 24(4): 2530-2535. |
18 | SIRCAR S. Publications on adsorption science and technology[J]. Adsorption, 2000, 6(4): 359-365. |
19 | YANG J F, LI J M, WANG W, et al. Adsorption of CO2, CH4, and N2 on 8-, 10-, and 12-membered ring hydrophobic microporous high-silica zeolites: DDR, silicalite-1, and Beta[J]. Industrial & Engineering Chemistry Research, 2013, 52(50): 17856-17864. |
20 | 刘佳奇, 尚华, 唐轩, 等. 分子筛基CH4-N2分离材料的研究进展[J]. 化工进展, 2019, 38(1): 449-456. |
LIU Jiaqi, SHANG Hua, TANG Xuan, et al. Zeolite based materials for CH4-N2 separation[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 449-456. | |
21 | LIU X W, GUO Y, TAO A D, et al. “Explosive” synthesis of metal-formate frameworks for methane capture: an experimental and computational study[J]. Chemical Communications, 2017, 53(83): 11437-11440. |
22 | 贾晓霞,王丽,元宁,等. 二价铬/钼/镍空配位MOFs的CH4/N2吸附分离研究[J]. 化工学报, 2018, 69(9): 3896-3904, 4138. |
JIA Xiaoxia, WANG Li, YUAN Ning, et al. CH4 adsorption separation research of MOFs with divalent Cr/Mo/Ni unsaturated metal sites[J]. CIESC Journal, 2018, 69(9): 3896-3904, 4138. | |
23 | LI L B, YANG J F, LI J M, et al. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: a detailed dynamic comparison with MIL-100(Cr) and activated carbon[J]. Microporous and Mesoporous Materials, 2014, 198: 236-246. |
24 | KIM T H, KIM S Y, YOON T U, et al. Improved methane/nitrogen separation properties of zirconium-based metal-organic framework by incorporating highly polarizable bromine atoms[J]. Chemical Engineering Journal, 2020, 399: 125717. |
25 | KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16): 5415-5418. |
26 | KIRCHON A, FENG L, DRAKE H F, et al. From fundamentals to applications: a toolbox for robust and multifunctional MOF materials[J]. Chemical Society Reviews, 2018, 47(23): 8611-8638. |
27 | KRENO L E, LEONG K, FARHA O K, et al. Metal-organic framework materials as chemical sensors[J]. Chemical Reviews, 2012, 112(2): 1105-1125. |
28 | YAGHI O M, LI G M, LI H L. Selective binding and removal of guests in a microporous metal-organic framework[J]. Nature, 1995, 378(6558): 703-706. |
29 | EDDAOUDI M, KIM J, ROSI N, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295(5554): 469-472. |
30 | MILLANGE F, SERRE C, FÉREY G. Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrⅢ hybrid inorganic-organic microporous solids: CrⅢ(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H}x[J]. Chemical Communications, 2002(8): 822-823. |
31 | PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc. Chem. Res., 2010, 43(1): 58-67. |
32 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
33 | KONDO M, OKUBO T, ASAMI A, et al. Rational synthesis of stable channel-like cavities with methane gas adsorption properties: [Cu2(pzdc)2(L)n] (pzdc=pyrazine-2,3-dicarboxylate; L=a pillar ligand)[J]. Angewandte Chemie International Edition, 1999, 38(1/2): 140-143. |
34 | MARTÍ-RUJAS J, ISLAM N, HASHIZUME D, et al. Dramatic structural rearrangements in porous coordination networks[J]. Journal of the American Chemical Society, 2011, 133(15): 5853-5860. |
35 | LI J R, SCULLEY J, ZHOU H C, et al. Metal-organic frameworks for separations[J]. Chem. Rev., 2012, 112(2): 869-932. |
36 | LI L B, YANG J F, ZHAO Q, et al. One-dimensional interpenetrated coordination polymers showing step gas sorption properties[J]. CrystEngComm, 2013, 15(9): 1689. |
37 | MA H, REN H, ZOU X, et al. Post-metalation of porous aromatic frameworks for highly efficient carbon capture from CO2 + N2 and CH4 + N2 mixtures[J]. Polymer Chemistry, 2014, 5(1): 144-152. |
38 | HU J L, SUN T J, LIU X W, et al. Rationally tuning the separation performances of [M3(HCOO)6] frameworks for CH4/N2 mixtures via metal substitution[J]. Microporous and Mesoporous Materials, 2016, 225: 456-464. |
39 | 张倬铭, 杨江峰, 陈杨, 等. 一维直孔道MOFs对CH4/N2和CO2/CH4的分离[J]. 化工学报, 2015, 66(9): 3549-3555. |
ZHANG Zhuoming, YANG Jiangfeng, CHEN Yang, et al. Separation of CH4/N2 and CO2/CH4 mixtures in one dimension channel MOFs[J]. CIESC Journal, 2015, 66(9): 3549-3555. | |
40 | HU J L, SUN T J, LIU X W, et al. Separation of CH4/N2 mixtures in metal-organic frameworks with 1D micro-channels[J]. RSC Advances, 2016, 6(68): 64039-64046. |
41 | WU X F, YUAN B, BAO Z B, et al. Adsorption of carbon dioxide, methane and nitrogen on an ultramicroporous copper metal-organic framework[J]. Journal of Colloid and Interface Science, 2014, 430: 78-84. |
42 | CHEN Y W, WU H X, YUAN Y N, et al. Highly rapid mechanochemical synthesis of a pillar-layer metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2020, 385: 123836. |
43 | HE Y, XIANG S, ZHANG Z, et al. A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas[J]. Chemical Communications, 2012, 48(88): 10856-10858. |
44 | MÖLLMER J, LANGE M, MÖLLER A, et al. Pure and mixed gas adsorption of CH4 and N2 on the metal-organic framework Basolite® A100 and a novel copper-based 1,2,4-triazolyl isophthalate MOF[J]. Journal of Materials Chemistry, 2012, 22(20): 10274. |
45 | LI J M, YANG J F, LI L B, et al. Separation of CO2/CH4 and CH4/N2 mixtures using MOF-5 and Cu3(BTC)2[J]. Journal of Energy Chemistry, 2014, 23(4): 453-460. |
46 | SHI Q, WANG J, SHANG H, et al. Effective CH4 enrichment from N2 by SIM-1 via a strong adsorption potential SOD cage[J]. Separation and Purification Technology, 2020, 230: 115850. |
47 | NIU Z, CUI X L, PHAM T, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
48 | CHANG M, ZHAO Y J, LIU D H, et al. Methane-trapping metal-organic frameworks with an aliphatic ligand for efficient CH4/N2 separation[J]. Sustainable Energy & Fuels, 2020, 4(1): 138-142. |
49 | CHANG M, REN J H, YANG Q Y, et al. A robust calcium-based microporous metal-organic framework for efficient CH4/N2 separation[J]. Chemical Engineering Journal, 2021, 408: 127294. |
50 | KIVI C E, GELFAND B S, DURECKOVA H, et al. 3D porous metal-organic framework for selective adsorption of methane over dinitrogen under ambient pressure[J]. Chemical Communications, 2018, 54(100): 14104-14107. |
51 | CHANG M, ZHAO Y J, YANG Q Y, et al. Microporous metal-organic frameworks with hydrophilic and hydrophobic pores for efficient separation of CH4/N2 mixture[J]. ACS Omega, 2019, 4(11): 14511-14516. |
52 | KIM D, LEE H. Hydrophilic pore-blocked metal-organic frameworks: a simple route to a highly selective CH4/N2 separation[J]. RSC Advances, 2015, 5(4): 2749-2755. |
53 | MEEK S T, TEICH-MCGOLDRICK S L, PERRY J J, et al. Effects of polarizability on the adsorption of noble gases at low pressures in monohalogenated isoreticular metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2012, 116(37): 19765-19772. |
54 | LI L Y, YANG L F, WANG J W, et al. Highly efficient separation of methane from nitrogen on a squarate-based metal-organic framework[J]. AIChE Journal, 2018, 64(10): 3681-3689. |
55 | LIU B, SMIT B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. The Journal of Physical Chemistry C, 2010, 114(18): 8515-8522. |
56 | LYU D, WU Y, CHEN J Y, et al. Improving CH4/N2 selectivity within isomeric Al-based MOFs for the highly selective capture of coal-mine methane[J]. AIChE Journal, 2020, 66(9): e16287. |
57 | LI L B, YANG J F, LI J M, et al. Adsorption and molecular simulation of CO2 and CH4 in two-dimensional metal-organic frameworks with the same layered substrate[J]. CrystEngComm, 2013, 15(34): 6782-6789. |
58 | YANG J F, YU Q H, ZHAO Q, et al. Adsorption CO2, CH4 and N2 on two different spacing flexible layer MOFs[J]. Microporous and Mesoporous Materials, 2012, 161: 154-159. |
59 | LI L B, WANG Y, YANG J F, et al. Targeted capture and pressure/temperature-responsive separation in flexible metal-organic frameworks[J]. Journal of Materials Chemistry A, 2015, 3(45): 22574-22583. |
60 | HE Y D, SHANG J, GU Q F, et al. Converting 3D rigid metal-organic frameworks (MOFs) to 2D flexible networks via ligand exchange for enhanced CO2/N2 and CH4/N2 separation[J]. Chemical Communications, 2015, 51(79): 14716-14719. |
61 | LIU X W, GU Y M, SUN T J, et al. Water resistant and flexible MOF materials for highly efficient separation of methane from nitrogen[J]. Industrial & Engineering Chemistry Research, 2019, 58(44): 20392-20400. |
62 | RALLAPALLI P, PRASANTH K P, PATIL D, et al. Sorption studies of CO2, CH4, N2, CO, O2 and Ar on nanoporous aluminum terephthalate [MIL-53(Al)][J]. Journal of Porous Materials, 2011, 18(2): 205-210. |
63 | LEE K, ISLEY W C, DZUBAK A L, et al. Design of a metal-organic framework with enhanced back bonding for separation of N2 and CH4[J]. Journal of the American Chemical Society, 2014, 136(2): 698-704. |
64 | JARAMILLO D E, REED D A, JIANG H Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
65 | YOON J W, CHANG H, LEE S J, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
66 | KUZNICKI S M, BELL V A, NAIR S, et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848): 720-724. |
[1] | YANG Yudi, LI Wentao, QIAN Yongkang, HUI Junhong. Analysis of influencing factors of natural gas turbulent diffusion flame length in industrial combustion chamber [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 267-275. |
[2] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[3] | ZHAO Wei, ZHAO Deyin, LI Shihan, LIU Hongda, SUN Jin, GUO Yanqiu. Synthesis and application of triazine drag reducing agent for nature gas pipeline [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 391-399. |
[4] | LAI Shini, JIANG Lixia, LI Jun, HUANG Hongyu, KOBAYASHI Noriyuki. Research progress of ammonia blended fossil fuel [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4603-4615. |
[5] | PAN Yichang, ZHOU Rongfei, XING Weihong. Advanced microporous membranes for efficient separation of same-carbon-number hydrocarbon mixtures: State-of-the-art and challenges [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3926-3942. |
[6] | HUANG Yufei, LI Ziyi, HUANG Yangqiang, JIN Bo, LUO Xiao, LIANG Zhiwu. Research progress on catalysts for photocatalytic CO2 and CH4 reforming [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4247-4263. |
[7] | XI Yonglan, WANG Chengcheng, YE Xiaomei, LIU Yang, JIA Zhaoyan, CAO Chunhui, HAN Ting, ZHANG Yingpeng, TIAN Yu. Research progress on the application of micro/nano bubbles in anaerobic digestion [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4414-4423. |
[8] | LI Yanling, ZHUO Zhen, CHI Liang, CHEN Xi, SUN Tanglei, LIU Peng, LEI Tingzhou. Research progress on preparation and application of nitrogen-doped biochar [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3720-3735. |
[9] | LI Jia, FAN Xing, CHEN Li, LI Jian. Research progress of simultaneous removal of NO x and N2O from the tail gas of nitric acid production [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3770-3779. |
[10] | CHEN Na, ZHANG Xiaojing, ZHANG Nan, MA Bingbing, ZHANG Han, YANG Haojie, ZHANG Hongzhong. Effect of quenching enzymes on partial nitrification-mixed autotrophic nitrogen removal system [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3816-3823. |
[11] | LIU Yang, YE Xiaomei, MIAO Xiao, WANG Chengcheng, JIA Zhaoyan, CAO Chunhui, XI Yonglan. Pilot-scale process research on dry digestion of rural organic household waste under ammonia stress [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3847-3854. |
[12] | ZHANG Kai, LYU Qiunan, LI Gang, LI Xiaosen, MO Jiamei. Morphology and occurrence characteristics of methane hydrates in the mud of the South China Sea [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3865-3874. |
[13] | ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048. |
[14] | JIANG Bolong, CUI Yanyan, SHI Shunjie, CHANG Jiacheng, JIANG Nan, TAN Weiqiang. Synthesis of transition metal Co3O4/ZnO-ZIF oxygen reduction catalyst by Co/Zn-ZIF template method and its electricity generation performance [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3066-3076. |
[15] | LI Baixue, XIN Xin, ZHU Yumeng, LIU Qin, LIU Xin. Construction of sulfur autotrophic short-cut denitrification and anaerobic ammonium oxidation (SASD-A) coupling system and effect mechanisms of influent S/N ratio on denitrification process [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3261-3271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |