Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (9): 4762-4773.DOI: 10.16085/j.issn.1000-6613.2021-0429
Previous Articles Next Articles
HE Zexing1,2(), SHI Chengxiang1,2, CHEN Zhichao1,2, PAN Lun1,2, HUANG Zhenfeng1,2, ZHANG Xiangwen1,2, ZOU Jijun1,2()
Received:
2021-03-02
Revised:
2021-05-13
Online:
2021-09-13
Published:
2021-09-05
Contact:
ZOU Jijun
何泽兴1,2(), 史成香1,2, 陈志超1,2, 潘伦1,2, 黄振峰1,2, 张香文1,2, 邹吉军1,2()
通讯作者:
邹吉军
作者简介:
何泽兴(1997—),男,硕士研究生,研究方向为酸性电解水制氢催化剂开发。E-mail: 基金资助:
CLC Number:
HE Zexing, SHI Chengxiang, CHEN Zhichao, PAN Lun, HUANG Zhenfeng, ZHANG Xiangwen, ZOU Jijun. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773.
何泽兴, 史成香, 陈志超, 潘伦, 黄振峰, 张香文, 邹吉军. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2021-0429
25 | MAHMOOD J, LI F, JUNG S M, et al. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction[J]. Nature Nanotechnology, 2017, 12(5): 441-446. |
26 | ZHENG Z L, YU L, GAO M, et al. Boosting hydrogen evolution on MoS2 via co-confining selenium in surface and cobalt in inner layer[J]. Nature Communications, 2020, 11: 3315. |
27 | HAN N N, YANG K R, LU Z Y, et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid[J]. Nature Communications, 2018, 9: 924. |
28 | ZHOU L Y, YAN S C, SONG H Z, et al. Multivariate control of effective cobalt doping in tungsten disulfide for highly efficient hydrogen evolution reaction[J]. Scientific Reports, 2019, 9(1): 1357. |
29 | ZHANG L L, ZHU S Q, DONG S Y, et al. Co nanoparticles encapsulated in porous N-doped carbon nanofibers as an efficient electrocatalyst for hydrogen evolution reaction[J]. Journal of the Electrochemical Society, 2018, 165(15): J3271-J3275. |
30 | DENG J, REN P J, DENG D H, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(7): 2100-2104. |
31 | TIAN Y Y, WANG S, VELASCO E, et al. A Co-doped nanorod-like RuO2 electrocatalyst with abundant oxygen vacancies for acidic water oxidation[J]. iScience, 2020, 23(1): 100756. |
32 | GRIMAUD A, DEMORTIÈRE A, SAUBANÈRE M, et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction[J]. Nature Energy, 2017, 2: 16189. |
33 | ZHANG H B, LIU Y Y, CHEN T, et al. Unveiling the activity origin of electrocatalytic oxygen evolution over isolated Ni atoms supported on a N-doped carbon matrix[J]. Advanced Materials, 2019, 31(48): 1904548. |
34 | BLASCO-AHICART M, SORIANO-LÓPEZ J, CARBÓ J J, et al. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media[J]. Nature Chemistry, 2018, 10(1): 24-30. |
35 | LEI Z W, WANG T Y, ZHAO B T, et al. Recent progress in electrocatalysts for acidic water oxidation[J]. Advanced Energy Materials, 2020, 10(23): 2000478. |
36 | HUANG Z F, SONG J J, DOU S, et al. Strategies to break the scaling relation toward enhanced oxygen electrocatalysis[J]. Matter, 2019, 1(6): 1494-1518. |
37 | HUANG Z F, SONG J J, DU Y H, et al. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts[J]. Nature Energy, 2019, 4(4): 329-338. |
38 | GEIGER S, KASIAN O, LEDENDECKER M, et al. The stability number as a metric for electrocatalyst stability benchmarking[J]. Nature Catalysis, 2018, 1(7): 508-515. |
39 | FABBRI E, HABEREDER A, WALTAR K, et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2014, 4(11): 3800-3821. |
40 | SAPOUNTZI F M, GRACIA J M, WESTSTRATE C J J, et al. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas[J]. Progress in Energy and Combustion Science, 2017, 58: 1-35. |
41 | HUYNH M, BEDIAKO D K, NOCERA D G. A functionally stable manganese oxide oxygen evolution catalyst in acid[J]. Journal of the American Chemical Society, 2014, 136(16): 6002-6010. |
1 | 国家发改委,国家能源局. 能源发展“十三五”规划[EB/OL]. [2017-01-17]. . |
National Development and Reform Commission, National Energy Administration. The 13th Five-Year Plan for energy development[EB/OL]. [2017-01-17]. . | |
2 | DUTTA S. A review on production, storage of hydrogen and its utilization as an energy resource[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(4): 1148-1156. |
3 | BIROL F. The future of hydrogen[EB/OL]. [2019-06]. . |
4 | ABDALLA A M, HOSSAIN S, NISFINDY O B, et al. Hydrogen production, storage, transportation and key challenges with applications: a review[J]. Energy Conversion and Management, 2018, 165: 602-627. |
5 | MIDILLI A, DINCER I. Hydrogen as a renewable and sustainable solution in reducing global fossil fuel consumption[J]. International Journal of Hydrogen Energy, 2008, 33(16): 4209-4222. |
6 | TLILI O, MANSILLA C, FRIMAT D, et al. Hydrogen market penetration feasibility assessment: mobility and natural gas markets in the US, Europe, China and Japan[J]. International Journal of Hydrogen Energy, 2019, 44(31): 16048-16068. |
7 | YE L T, XIE K. High-temperature electrocatalysis and key materials in solid oxide electrolysis cells[J]. Journal of Energy Chemistry, 2021, 54: 736-745. |
8 | SHIVA KUMAR S, HIMABINDU V. Hydrogen production by PEM water electrolysis—A review[J]. Materials Science for Energy Technologies, 2019, 2(3): 442-454. |
9 | TONG W M, FORSTER M, DIONIGI F, et al. Electrolysis of low-grade and saline surface water[J]. Nature Energy, 2020, 5(5): 367-377. |
10 | HERNÁNDEZ-GÓMEZ Á, RAMIREZ V, GUILBERT D. Investigation of PEM electrolyzer modeling: electrical domain, efficiency, and specific energy consumption[J]. International Journal of Hydrogen Energy, 2020, 45(29): 14625-14639. |
11 | GAGO A S, ANSAR S A, SARUHAN B, et al. Protective coatings on stainless steel bipolar plates for proton exchange membrane (PEM) electrolysers[J]. Journal of Power Sources, 2016, 307(35): 815-825. |
12 | GRIGORIEV S A, MILLET P, VOLOBUEV S A, et al. Optimization of porous current collectors for PEM water electrolysers[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4968-4973. |
13 | SUERMANN M, SCHMIDT T J, BUCHI F N. Investigation of mass transport losses in polymer electrolyte electrolysis cells[J]. ECS Transactions, 2015, 69(17): 1141-1148. |
14 | BARBOSA R, ESCOBAR MORALES B. Electrochemical and microstructural analysis of a modified gas diffusion layer for a PEM water electrolyzer[J]. International Journal of Electrochemical Science, 2020, 15: 5571-5584. |
15 | MO J K, KANG Z Y, RETTERER S T, et al. Discovery of true electrochemical reactions for ultrahigh catalyst mass activity in water splitting[J]. Science Advances, 2016, 2(11): e1600690. |
16 | FALCÃO D S, PINTO A M F R. A review on PEM electrolyzer modelling: guidelines for beginners[J]. Journal of Cleaner Production, 2020, 261: 121184. |
17 | PITSCHAK B, MERGEL J. Electrolytic processes[M]//Hydrogen and Fuel Cell. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016: 187-207. |
18 | BESSARABOV D, WANG H J, LI H, et al. PEM electrolysis for hydrogen production: principles and applications [M]. Boca Raton, FL, USA: CRC Press, 2016. |
19 | BUTTLER A, SPLIETHOFF H. Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 2440-2454. |
20 | SLADE S, CAMPBELL S A, RALPH T R, et al. Ionic conductivity of an extruded nafion 1100 EW series of membranes[J]. Journal of the Electrochemical Society, 2002, 149(12): A1556. |
21 | DAVID M, OCAMPO-MARTÍNEZ C, SÁNCHEZ-PEÑA R. Advances in alkaline water electrolyzers: a review[J]. Journal of Energy Storage, 2019, 23: 392-403. |
22 | SUNFIRE G. RSOC electrolyzer factsheet[EB/OL]. . |
23 | LEWINSKI K A, VLIET D VAN DER, LUOPA S M. NSTF advances for PEM electrolysis—The effect of alloying on activity of NSTF electrolyzer catalysts and performance of NSTF based PEM electrolyzers[J]. ECS Transactions, 2015, 69(17): 893-917. |
24 | CHENG Q, HU C, WANG G, et al. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution[J]. Journal of the American Chemical Society, 2020, 142(12): 5594-5601. |
42 | LI A L, OOKA H, BONNET N, et al. Stable potential windows for long-term electrocatalysis by manganese oxides under acidic conditions[J]. Angewandte Chemie International Edition, 2019, 58(15): 5054-5058. |
43 | SONG J J, WEI C, HUANG Z F, et al. A review on fundamentals for designing oxygen evolution electrocatalysts[J]. Chemical Society Reviews, 2020, 49(7): 2196-2214. |
44 | YE S H, SHI Z X, FENG J X, et al. Activating CoOOH porous nanosheet arrays by partial iron substitution for efficient oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2018, 57(10): 2672-2676. |
45 | CHEN D W, QIAO M, LU Y R, et al. Preferential cation vacancies in perovskite hydroxide for the oxygen evolution reaction[J]. Angewandte Chemie International Edition, 2018, 57(28): 8691-8696. |
46 | HWANG J, FENG Z X, CHARLES N, et al. Tuning perovskite oxides by strain: Electronic structure, properties, and functions in (electro)catalysis and ferroelectricity[J]. Materials Today, 2019, 31(5): 100-118. |
47 | SEITZ L C, DICKENS C F, NISHIO K, et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction[J]. Science, 2016, 353(6303): 1011-1014. |
48 | SUN M H, JI J P, HU M Y, et al. Overwhelming the performance of single atoms with atomic clusters for platinum-catalyzed hydrogen evolution[J]. ACS Catalysis, 2019, 9(9): 8213-8223. |
49 | LIU D B, LI X Y, CHEN S M, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution[J]. Nature Energy, 2019, 4(6): 512-518. |
50 | DU N N, WANG C M, WANG X J, et al. Trimetallic TriStar nanostructures: tuning electronic and surface structures for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2016, 28(10): 2077-2084. |
51 | MURTHY A P, MADHAVAN J, MURUGAN K. Recent advances in hydrogen evolution reaction catalysts on carbon/carbon-based supports in acid media[J]. Journal of Power Sources, 2018, 398(2): 9-26. |
52 | ZOU X X, ZHANG Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180. |
53 | SEO B, JOO S H. Recent advances in unveiling active sites in molybdenum sulfide-based electrocatalysts for the hydrogen evolution reaction[J]. Nano Convergence, 2017, 4(1): 19. |
54 | KING L A, HUBERT M A, CAPUANO C, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature Nanotechnology, 2019, 14(11): 1071-1074. |
55 | HOLZAPFEL P K R, BÜHLER M, ESCALERA-LÓPEZ D, et al. Fabrication of a robust PEM water electrolyzer based on non-noble metal cathode catalyst: [Mo3S13]2-clusters anchored to N-doped carbon nanotubes[J]. Small, 2020, 16(37): 2003161. |
56 | GRUBB W T. Batteries with solid ion exchange electrolytes[J]. Journal of the Electrochemical Society, 1959, 106(4): 275. |
57 | NUTTALL L J, FICKETT A P, TITTERINGTON W A. Hydrogen generation by solid polymer electrolyte water electrolysis[M]. Boston, MA: Springer US, 1975. |
58 | AYERS K. The potential of proton exchange membrane-based electrolysis technology[J]. Current Opinion in Electrochemistry, 2019, 18: 9-15. |
59 | OKANO K. Development histories: hydrogen technologies[M]//Green Energy and Technology. Tokyo: Springer Japan, 2016: 53-92. |
60 | OnSite’s Proton1MW PEM electrolyser for Europe energy storage[J]. Fuel Cells Bulletin, 2012, 2012(12): 9-10. |
61 | Proton OnSite MW electrolyser passes half-million cell hours[J]. Fuel Cells Bulletin, 2016, 2016(2): 8. |
62 | OBERLIN R, FISCHER M. Status of the membrel process for water electrolysis[J]. Hydrogen Energy Progress, 1986, 2(1): 3. |
63 | STUCKI S, SCHERER G G, SCHLAGOWSKI S, et al. PEM water electrolysers: evidence for membrane failure in 100kW demonstration plants[J]. Journal of Applied Electrochemistry, 1998, 28(10): 1041-1049. |
64 | MILLET P, DURAND R, PINERI M. Preparation of new solid polymer electrolyte composites for water electrolysis[J]. International Journal of Hydrogen Energy, 1990, 15(4): 245-253. |
65 | GRIGORIEV S A, POREMBSKY V I, FATEEV V N. Pure hydrogen production by PEM electrolysis for hydrogen energy[J]. International Journal of Hydrogen Energy, 2006, 31(2): 171-175. |
66 | MILLET P, DRAGOE D, GRIGORIEV S, et al. GenHyPEM: a research program on PEM water electrolysis supported by the European Commission[J]. International Journal of Hydrogen Energy, 2009, 34(11): 4974-4982. |
67 | TAKAHASHI K. Sunshine project in Japan-solar photovoltaic program[J]. Solar Cells, 1989, 26(1/2): 87-96. |
68 | YAMAGUCHI M, OKISAWA K, NAKANORI T. Development of high performance solid polymer electrolyte water electrolyzer in WE-NET[C]//IECEC- |
97 | Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203). July 27-August 1, 1997, Honolulu, HI, USA. IEEE, 1997: 1958-1965. |
69 | HASHIMOTO A, KATSUO H, KATSUTOSHI S. Development of PEM water electrolysis type hydrogen production system for WE-NET[C]//Proceedings of the 14th World Hydrogen Energy Conference, Canada. 2002. |
70 | 吴志强, 高峰, 邓一兵, 等. 空间站再生生保关键技术研究[J]. 航天医学与医学工程, 2018, 31(2): 105-111. |
WU Zhiqiang, GAO Feng, DENG Yibing, et al. Key technology review of research on regenerative environmental control and life support system for space station[J]. Space Medicine & Medical Engineering, 2018, 31(2): 105-111. | |
71 | 李俊荣, 谭意诚, 谢曙, 等. 一种质子膜水电解池: CN106011914B[P]. 2018-03-27. |
LI Junrong, TAN Yicheng, XIE Shu, et al. Proton membrane water electrolytic cell: CN106011914B[P]. 2018-03-27. | |
72 | 李俊荣, 谭意诚, 谢曙, 等. 一种高差压水电解器: CN105951118B[P]. 2018-09-18. |
LI Junrong, TAN Yicheng, XIE Shu, et al. High-differential-pressure water electrolyzer: CN105951118B[P]. 2018-09-18. | |
73 | 中国氢能联盟. 中国氢能源及燃料电池产业白皮书[EB/OL]. [2019-06-29]. . |
China Hydrogen Alliance. White paper on China’s hydrogen energy and fuel cell industry[EB/OL]. [2019-06-29]. . | |
74 | PEM electrolyser from Siemens for Salzgitter steelmaking hydrogen[J]. Fuel Cells Bulletin, 2019, 2019(12): 10. |
75 | BERTUCCIOLI L, CHAN A, HART D, et al. Study on development of water electrolysis in the EU[EB/OL]. [2014-02-07]. . |
76 | SHIRVANIAN P, BERKEL F VAN. Novel components in proton exchange membrane (PEM) water electrolyzers (PEMWE): status, challenges and future needs. A mini review[J]. Electrochemistry Communications, 2020, 114(5): 106704. |
77 | FABBRI E, SCHMIDT T J. Oxygen evolution reaction—The enigma in water electrolysis[J]. ACS Catalysis, 2018, 8(10): 9765-9774. |
78 | MEIER J C, GALEANO C, KATSOUNAROS I, et al. Degradation mechanisms of Pt/C fuel cell catalysts under simulated start-stop conditions[J]. ACS Catalysis, 2012, 2(5): 832-843. |
79 | BABIC U, SUERMANN M, BÜCHI F N, et al. Critical review—Identifying critical gaps for polymer electrolyte water electrolysis development[J]. Journal of the Electrochemical Society, 2017, 164(4): F387-F399. |
81 | AYERS K. The potential of proton exchange membrane-based electrolysis technology[J]. Current Opinion in Electrochemistry, 2019, 18: 9-15. |
82 | IEA. World energy outlook 2019[EB/OL]. [2019-09]. . |
83 | MEIER K. Hydrogen production with sea water electrolysis using Norwegian offshore wind energy potentials[J]. International Journal of Energy and Environmental Engineering, 2014, 5(2/3): 104. |
84 | GÜL T, PALES A F, PAOLI L. Batteries and hydrogen technology: keys for a clean energy future[EB/OL]. [2020-03-03]. . |
85 | Vattenfall, Preem in fossil-free hydrogen production partnership[J]. Fuel Cells Bulletin, 2019, 2019(6): 11. |
86 | DUONG C, BOWER C, KEN H M, et al. Quest carbon capture and storage offset project: findings and learnings from 1st reporting period[J]. International Journal of Greenhouse Gas Control, 2019, 89: 65-75. |
87 | OZTURK M, DINCER I. An integrated system for ammonia production from renewable hydrogen: a case study[J]. International Journal of Hydrogen Energy, 2021, 46(8): 5918-5925. |
88 | BERMUDEZ J M, HASEGAWA T. Hydrogen-tracking report[EB/OL]. [2020-06]. . |
89 | AGN plans HyP plant in Queensland[J]. Fuel Cells Bulletin, 2020, 2020(3): 11-12. |
90 | ARICÒ A S, SIRACUSANO S, BRIGUGLIO N, et al. Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources[J]. Journal of Applied Electrochemistry, 2013, 43(2): 107-118. |
91 | JUNIOR I. Power-to-X: the pathway to a carbon-free world[EB/OL]. [2019-10]. . |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | SHI Yongxing, LIN Gang, SUN Xiaohang, JIANG Weigeng, QIAO Dawei, YAN Binhang. Research progress on active sites in Cu-based catalysts for CO2 hydrogenation to methanol [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 287-298. |
[3] | XIE Luyao, CHEN Songzhe, WANG Laijun, ZHANG Ping. Platinum-based catalysts for SO2 depolarized electrolysis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 299-309. |
[4] | YANG Xiazhen, PENG Yifan, LIU Huazhang, HUO Chao. Regulation of active phase of fused iron catalyst and its catalytic performance of Fischer-Tropsch synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 310-318. |
[5] | WANG Lele, YANG Wanrong, YAO Yan, LIU Tao, HE Chuan, LIU Xiao, SU Sheng, KONG Fanhai, ZHU Canghai, XIANG Jun. Influence of spent SCR catalyst blending on the characteristics and deNO x performance for new SCR catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 489-497. |
[6] | DENG Liping, SHI Haoyu, LIU Xiaolong, CHEN Yaoji, YAN Jingying. Non-noble metal modified vanadium titanium-based catalyst for NH3-SCR denitrification simultaneous control VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 542-548. |
[7] | CHENG Tao, CUI Ruili, SONG Junnan, ZHANG Tianqi, ZHANG Yunhe, LIANG Shijie, PU Shi. Analysis of impurity deposition and pressure drop increase mechanisms in residue hydrotreating unit [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4616-4627. |
[8] | WANG Peng, SHI Huibing, ZHAO Deming, FENG Baolin, CHEN Qian, YANG Da. Recent advances on transition metal catalyzed carbonylation of chlorinated compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4649-4666. |
[9] | ZHANG Qi, ZHAO Hong, RONG Junfeng. Research progress of anti-toxicity electrocatalysts for oxygen reduction reaction in PEMFC [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4677-4691. |
[10] | GE Quanqian, XU Mai, LIANG Xian, WANG Fengwu. Research progress on the application of MOFs in photoelectrocatalysis [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4692-4705. |
[11] | WANG Weitao, BAO Tingyu, JIANG Xulu, HE Zhenhong, WANG Kuan, YANG Yang, LIU Zhaotie. Oxidation of benzene to phenol over aldehyde-ketone resin based metal-free catalyst [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4706-4715. |
[12] | GE Yafen, SUN Yu, XIAO Peng, LIU Qi, LIU Bo, SUN Chengying, GONG Yanjun. Research progress of zeolite for VOCs removal [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4716-4730. |
[13] | XIANG Yang, HUANG Xun, WEI Zidong. Recent progresses in the activity and selectivity improvement of electrocatalytic organic synthesis [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4005-4014. |
[14] | WANG Yaogang, HAN Zishan, GAO Jiachen, WANG Xinyu, LI Siqi, YANG Quanhong, WENG Zhe. Strategies for regulating product selectivity of copper-based catalysts in electrochemical CO2 reduction [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4043-4057. |
[15] | LIU Yi, FANG Qiang, ZHONG Dazhong, ZHAO Qiang, LI Jinping. Cu facets regulation of Ag/Cu coupled catalysts for electrocatalytic reduction of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4136-4142. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |