Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3813-3825.DOI: 10.16085/j.issn.1000-6613.2020-1540
• Materials science and technology • Previous Articles Next Articles
HE Guangyuan(), CHEN Xuemin(), WANG Yuting, LI Fatang, ZHANG Zijian, XU Wenhao
Received:
2020-08-04
Revised:
2021-01-24
Online:
2021-07-19
Published:
2021-07-06
Contact:
CHEN Xuemin
何广源(), 陈学敏(), 王雨婷, 李发堂, 张子健, 许文浩
通讯作者:
陈学敏
作者简介:
何广源(1994—),女,硕士研究生,研究方向为超级电容器电极材料。E-mail:基金资助:
CLC Number:
HE Guangyuan, CHEN Xuemin, WANG Yuting, LI Fatang, ZHANG Zijian, XU Wenhao. Research progress of nickel cobaltite based nanomaterials in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3813-3825.
何广源, 陈学敏, 王雨婷, 李发堂, 张子健, 许文浩. 钴酸镍基纳米材料在超级电容器中的研究进展[J]. 化工进展, 2021, 40(7): 3813-3825.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-1540
材料 | 合成方法 | 理论比电容/F·g-1 | 循环性 | 参考文献 |
---|---|---|---|---|
NiCo2O4NSs@HfCNWs/CC | 电沉积法 | 2102(1A/g) | 98%(10A/g,5000) | [ |
rGO/NiCo2O4 纳米复合材料 | 水热法 | 1003(1A/g) | 57%(10A/g,10000) | [ |
层级NiCo2O4 | 水热法 | 2623.3(1A/g) | 94%(10A/g,3000) | [ |
花状NiCo2O4 | 微波法 | 1006(1A/g) | 93.2%(8A/g,1000) | [ |
微球 | ||||
微米级NiCo2O4绒球 | 共模板法 | 2201.7(2A/g) | 85.8%(10A/g,3000) | [ |
3D多孔NiCo2O4 | 硬模板法 | 1389(1A/g) | 80%(4A/g,2500) | [ |
NiCo2O4薄膜 | 溶胶-凝胶法 | 2157(0.133mA/cm2) | 96.5%(0.53mA/cm2,10000) | [ |
NiCo2O4空心微球 | 热分解法 | 902(1A/g) | 89%(20mV/s,2500) | [ |
材料 | 合成方法 | 理论比电容/F·g-1 | 循环性 | 参考文献 |
---|---|---|---|---|
NiCo2O4NSs@HfCNWs/CC | 电沉积法 | 2102(1A/g) | 98%(10A/g,5000) | [ |
rGO/NiCo2O4 纳米复合材料 | 水热法 | 1003(1A/g) | 57%(10A/g,10000) | [ |
层级NiCo2O4 | 水热法 | 2623.3(1A/g) | 94%(10A/g,3000) | [ |
花状NiCo2O4 | 微波法 | 1006(1A/g) | 93.2%(8A/g,1000) | [ |
微球 | ||||
微米级NiCo2O4绒球 | 共模板法 | 2201.7(2A/g) | 85.8%(10A/g,3000) | [ |
3D多孔NiCo2O4 | 硬模板法 | 1389(1A/g) | 80%(4A/g,2500) | [ |
NiCo2O4薄膜 | 溶胶-凝胶法 | 2157(0.133mA/cm2) | 96.5%(0.53mA/cm2,10000) | [ |
NiCo2O4空心微球 | 热分解法 | 902(1A/g) | 89%(20mV/s,2500) | [ |
1 | SIMON P, GOGOTSI Y, DUNN B. Where do batteries end and supercapacitors begin?[J]. Science, 2014, 343(6167): 1210-1211. |
2 | WANG Y, SONG Y, XIA Y. Electrochemical capacitors: mechanism, materials, systems, characterization and applications[J]. Chemical Society Reviews, 2016, 45(21): 5925-5950. |
3 | MURALEE GOPI C V V, VINODH R, SAMBASIVAM S, et al. Recent progress of advanced energy storage materials for flexible and wearable supercapacitor: from design and development to applications[J]. Journal of Energy Storage, 2020, 27: 101035. |
4 | LIU Z, TIAN D, SHEN F, et al. Valorization of composting leachate for preparing carbon material to achieve high electrochemical performances for supercapacitor electrode[J]. Journal of Power Sources, 2020, 458: 228057. |
5 | LI J, LIU Z, ZHANG Q, et al. Anion and cation substitution in transition-metal oxides nanosheets for high-performance hybrid supercapacitors[J]. Nano Energy, 2019, 57: 22-33. |
6 | LI H, CHEN X, ZALNEZHAD E, et al. 3D hierarchical transition-metal sulfides deposited on Mxene as binder-free electrode for high-performance supercapacitors[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 309-316. |
7 | MENG Q, CAI K, CHEN Y, et al. Research progress on conducting polymer based supercapacitor electrode materials[J]. Nano Energy, 2017, 36: 268-285 |
8 | TAREEN J A K, MALECKI A, DOUMERC J P, et al. Growth and electrical properties of pure and Ni-doped Co3O4 single crystals[J]. Materials Research Bulletin, 1984, 19(8): 989-997. |
9 | SICKAFUS K E, WILLS J M. Spinel compounds: structure and property relations[J]. Journal of American Ceramic Society, 1999, 82(12): 3279-3292. |
10 | SEKO A, YUGE K, OBA F, et al. Prediction of ground-state structures and order-disorder phase transitions in Ⅱ-Ⅲ spinel oxides: a combined cluster-expansion method and first-principles study[J]. Physical Review B, 2006, 73(18): 184117. |
11 | BASHIR A, SHUKLA S, BASHIR R, et al. Low temperature, solution processed spinel NiCo2O4 nanoparticles as efficient hole transporting material for mesoscopic n-i-p perovskite solar cells[J]. Solar Energy, 2020, 196: 367-378. |
12 | HILL R J, CRAIG J R, GIBBS G V. Systematics of the spinel structure type[J]. Physics and Chemistry of Minerals, 1979, 4(4): 317-339. |
13 | 陈祥, 雷凯翔, 孙洪明, 等. 尖晶石型氧化物催化剂与金属-空气电池[J]. 储能科学与技术, 2017, 6(5): 904-923. |
CHEN Xiang, LEI Kaixiang, SUN Hongming, et al. Spinel-type transition metal oxide electrocatalysts for metal-air batteries[J]. Energy Storage Science and Technology, 2017, 6(5): 904-923 | |
14 | GRIMES R W, ANDERSON A B, HEUER A H. Predictions of cation distributions in AB2O4 spinels from normalized ion energies[J]. Journal of the American Chemical Society, 1989, 111(1): 1-7. |
15 | 许家胜, 宋忠笑, 张杰, 等. 尖晶石结构的钴基金属氧化物超级电容器电极材料的研究进展[J]. 电子元件与材料, 2016, 35(5): 1-6. |
XU Jiasheng, SONG Zhongxiao, ZHANG Jie, et al. Research progress of cobalt based metal oxides with spinel structure for supercapacitor electrodes[J]. Electronic Components and Materials, 2016, 35(5): 1-6. | |
16 | NIKOLOV I, DARKAOUI R, ZHECHEVA E, et al. Electrocatalytic activity of spinel related cobaltites MxCo3-xO4 (M = Li, Ni, Cu) in the oxygen evolution reaction[J]. Journal of Electroanalytical Chemistry, 1997, 429(1/2): 157-168. |
17 | CUI B, LIN H, LIU Y, et al. Photophysical and photocatalytic properties of core-ring structured NiCo2O4 nanoplatelets[J]. Journal of Physical Chemistry C, 2009, 113(32): 14083-14087. |
18 | LI Y, HAN X, YI T, et al. Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes[J]. Journal of Energy Chemistry, 2019, 31: 54-78. |
19 | WANG G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
20 | ZHANG Y, LI L, SU H, et al. Binary metal oxide: advanced energy storage materials in supercapacitors[J]. Journal of Materials Chemistry A, 2015, 3(1): 43-59. |
21 | WU Z, ZHU Y, JI X. NiCo2O4-based materials for electrochemical supercapacitor[J]. Journal of Materials Chemistry A, 2014, 2(36): 14759-14772. |
22 | YIN X, LI H, FU Y, et al. Hierarchical core-shell structure of NiCo2O4 nanosheets@HfC nanowires networks for high performance flexible solid-state hybrid supercapacitor[J]. Chemical Engineering Journal, 2020, 392: 124820. |
23 | WANG N, SUN B, ZHAO P, al et. Electrodeposition preparation of NiCo2O4 mesoporous film on ultrafine nickel wire for flexible asymmetric supercapacitors[J]. Chemical Engineering Journal, 2018, 345: 31-38. |
24 | FENG H, GAO S, SHI J, et al. Construction of 3D hierarchical porous NiCo2O4/graphene hydrogel/Ni foam electrode for high-performance supercapacitor[J]. Electrochimica Acta, 2019, 299: 116-124. |
25 | WALSH F C, WANG S, ZHOU N. The electrodeposition of composite coatings: diversity, applications and challenges[J]. Current Opinion in Electrochemistry, 2020, 20: 8-19. |
26 | FENG S, XU R. New materials in hydrothermal synthesis[J]. Accounts of Chemical Research, 2001, 34(3): 239-247. |
27 | ZHANG S, GAO H, ZHOU J, et al. Hydrothermal synthesis of reduced graphene oxide-modified NiCo2O4 nanowire arrays with enhanced reactivity for supercapacitors[J]. Journal of Alloys and Compounds, 2019, 792: 474-480. |
28 | SIWATCH P, SHARMA K, TRIPATHI S K. Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor[J]. Electrochimica Acta, 2020, 329: 135084. |
29 | GAO J, LIU Z, LIN Y, et al. NiCo2O4 nanofeathers derived from prussian blue analogues with enhanced electrochemical performance for supercapacitor[J]. Chemical Engineering Journal, 2020, 388: 124368. |
30 | WANG J, ZHANG Y, YE J, et al. Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors[J]. RSC Advances, 2016, 6(74): 70077-70084. |
31 | GIGUERE R J, BRAY T L, DUNCAN S M, et al. Application of commercial microwave ovens to organic synthesis[J]. Tetrahedron Letters, 1986, 27(41): 4945-4948. |
32 | HARUNA A B, OZOEMENA K I. Effects of microwave irradiation on the electrochemical performance of manganese-based cathode materials for lithium-ion batteries[J]. Current Opinion in Electrochemistry, 2019, 18: 16-23. |
33 | BILECKA I, NIEDERBERGER M. Microwave chemistry for inorganic nanomaterials synthesis[J]. Nanoscale, 2010, 2(8): 1358-1374. |
34 | LEI Y, LI J, WANG Y, et al. Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor[J]. ACS Applied Materials Interfaces, 2014, 6(3): 1773-1780. |
35 | WANG J, FANG Z, LI T, et al. Highly hydrophilic carbon dots’ decoration on NiCo2O4 nanowires for greatly increased electric conductivity, supercapacitance, and energy density[J]. Advanced Materials Interfaces, 2019, 6(9): 1900049. |
36 | SHANMUGAVANI A, SELVAN R K. Microwave assisted reflux synthesis of NiCo2O4/NiO composite: fabrication of high performance asymmetric supercapacitor with Fe2O3[J]. Electrochimica Acta, 2016, 189: 283-294. |
37 | GU D, SCHÜTH F. Synthesis of non-siliceous mesoporous oxides[J]. Chemical Society Reviews, 2014, 43(1): 313-344. |
38 | YANG P, ZHAO D, MARGOLESE D I, et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework[J]. Chemistry of Materials, 1999, 11(10): 2813-2826. |
39 | LI C, GAO X, LI S, et al. Novel micron-sized NiCo2O4 pompon directed by a co-template methodas capacitor electrode[J]. Materials Letters, 2019, 244: 74-77. |
40 | RUMPLECKER A, KLEITZ F, SALABAS E, et al. Hard templating pathways for the synthesis of nanostructured porous Co3O4[J]. Chemistry of Materials, 2007, 19(3): 485-496. |
41 | LU A, SCHÜTH F. Nanocasting: a versatile strategy for creating nanostructured porous materials[J]. Advanced Materials, 2006, 18(14): 1793-1805. |
42 | BAI Y, WANG R, LU X, et al. Template method to controllable synthesis 3D porous NiCo2O4 withenhanced capacitance and stability for supercapacitors[J]. Journal of Colloid and Interface Science, 2016, 468: 1-9. |
43 | HUANG L, ZHANG W, XIANG J, et al. Porous NiCo2O4/C nanofibers replicated by cotton template as high-rate electrode materials for supercapacitors[J]. Journal of Materiomics, 2016, 2(3): 248-255. |
44 | GRAHAM T. ⅩⅩⅩⅤ.-On the properties of silicic acid and other analogous colloidal substances[J]. Journal of the Chemical Society, 1864, 17: 318-327. |
45 | HENCE L L, WEST J K. The sol-gel process[J]. Chemical Reviews, 1990, 90(1): 33-72. |
46 | CIRIMINNA R, FIDALGO A, PANDARUS V, et al. The sol-gel route to advanced silica-based materials and recent applications[J]. Chemical Reviews, 2013, 113(8): 6592-6620. |
47 | NISTICÒ R, SCALARONE D, MAGNACCA G. Sol-gel chemistry, templating and spin-coating deposition: a combined approach to control in a simple way the porosity of inorganic thin films/coatings[J]. Microporous and Mesoporous Materials, 2017, 248: 18-29. |
48 | 武志刚, 高建峰. 溶胶-凝胶法制备纳米材料的研究进展[J]. 精细化工, 2010, 27(1): 21-25. |
WU Zhigang, GAO Jianfeng. Advances in synthesis of nanomaterials by sol-gel method[J]. Fine Chemicals, 2010, 27(1): 21-25. | |
49 | WU Y Q, CHEN X Y, JI P T, et al. Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors[J]. Electrochimica Acta, 2011, 56(22): 7517-7522. |
50 | LIU Y, WANG N, YANG C, et al. Sol-gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes[J]. Ceramics International, 2016, 42(9): 11411-11416. |
51 | WEI T, CHEN C, CHIEN H, et al. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process[J]. Advanced Materials (Deerfield Beach, Fla), 2010, 22(3): 347-351. |
52 | XU L, ZHANG L, CHENG B, et al. Rationally designed hierarchical NiCo2O4-C@Ni(OH)2 core-shell nanofibers for high performance supercapacitors[J]. Carbon, 2019, 152: 652-660. |
53 | MA Y, YU Z, LIU M, et al. Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors[J]. Ceramics International, 2019, 45(8): 10722-10732. |
54 | WEI Z, GUO J, QU M, et al. Honeycombed-like nanosheet array composite NiCo2O4/rGO for efficient methanol electrooxidation and supercapacitors[J]. Electrochimica Acta, 2020, 362: 137145. |
55 | CHATTERJEE M, SAHA S, DAS S, et al. Advanced asymmetric supercapacitor with NiCo2O4 nanoparticles and nanowires electrodes: a comparative morphological hierarchy[J]. Journal of Alloys and Compounds, 2020, 821: 153503. |
56 | DING R, QI L, WANG H. A facile and cost-effective synthesis of mesoporous NiCo2O4 nanoparticles and their capacitive behavior in electrochemical capacitors[J]. Journal of Solid State Electrochemistry, 2012, 16(11): 3621-3633. |
57 | ZHANG G, XIAO X, LI B, et al. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors[J]. Journal of Materials Chemistry A, 2017, 5(18): 8155-8186. |
58 | HAO C, ZHOU S, WANG J, et al. Preparation of hierarchical spinel NiCo2O4 nanowires for high-performance supercapacitors[J]. Industrial & Engineering Chemistry Research, 2018, 57(7): 2515-2525. |
59 | LIU Z, WANG Z, CHENG Y, et al. Facile synthesis of NiCo2-xFexO4 nanotubes/carbon textiles composites for high-performance electrochemical energy storage devices[J]. ACS Applied Nano Materials, 2018, 1(2): 997-1002. |
60 | YUNG W K C, LI G, LIEM H M, et al. Eye-friendly reduced graphene oxide circuits with nonlinear optical transparency on flexible poly(ethylene terephthalate) substrates[J]. Journal of Materials Chemistry C, 2015, 3(43): 11294-11299. |
61 | LIU Y, PENG X. Recent advances of supercapacitors based on two-dimensional materials[J]. Applied Materials Today, 2017, 8: 104-115. |
62 | ZHANG X, YANG F, CHEN H, et al. In situ growth of 2D ultrathin NiCo2O4 nanosheet arrays on Ni foam for high performance and flexible solid-state supercapacitors[J]. Small, 2020, 16(44): 2004188. |
63 | LI W, HUANG Y, LIU Y, et al. Three dimensional nanosuperstructures made of two-dimensional materials by design: synthesis, properties, and applications[J]. Nano Today, 2019, 29: 100799. |
64 | WANG H, FANG Y, SHI B, et al. Three-dimensional NiCo2O4@NiCo2O4 core-shell nanocones arrays for high performance supercapacitors[J]. Chemical Engineering Journal, 2018, 344: 311-319. |
65 | JIANG H, MA J, LI C. Hierarchical porous NiCo2O4 nanowires for high-rate supercapacitors[J]. Chemical Communications, 2012, 48(37): 4465. |
66 | SINGH A, OJHA S K, OJHA A K. Facile synthesis of porous nanostructures of NiCo2O4 grown on rGO sheet for high performance supercapacitors[J]. Synthetic Metals, 2020, 259: 116215. |
67 | MAO N, WANG H, SUI Y, et al. Extremely high-rate aqueous supercapacitor fabricated using doped carbon nanoflakes with large surface area and mesopores at near-commercial mass loading[J]. Nano Research, 2017, 10(5): 1767-1783. |
68 | 金玉红, 王莉, 尚玉明, 等. 尖晶石结构NiCo2O4材料在超级电容器中的应用进展[J]. 储能科学与技术, 2015, 4(1): 44-54. |
JIN Yuhong, WANG Li, SHANG Yuming, et al. Development of spinel Ni Co2O4 nanostructure material for application in supercapacitors[J]. Energy Storage Science and Technology, 2015, 4(1): 44-54. | |
69 | WANG K, HUANG J, WEI Z. Conducting polyaniline nanowire arrays for high performance supercapacitors[J]. Journal of Physical Chemistry C, 2010, 114(17): 8062-8067. |
70 | LI C, BAI H, SHI G. Conducting polymer nanomaterials: electrosynthesis and applications[J]. Chemical Society Reviews, 2009, 38(8): 2397-2409. |
71 | BOOPATHIRAJA R, PARTHIBAVARMAN M. Desert rose like heterostructure of NiCo2O4/NF@PPy composite has high stability and excellent electrochemical performance for asymmetric super capacitor application[J]. Electrochimica Acta, 2020, 346: 136270. |
72 | LI Y, ZHANG Z, CHEN Y, et al. Facile synthesis of a Ni-based NiCo2O4-PANI composite for ultrahigh specific capacitance[J]. Applied Surface Science, 2020, 506: 144646. |
73 | LI Y, PAN J, WU J, et al. Mesoporous NiCo2O4, nanoneedles@MnO2, nanoparticles grown on nickel foam for electrode used in high-performance supercapacitors[J]. Journal of Energy Chemistry, 2019, 31: 167-177. |
74 | CHEN D, PANG D, ZHANG S, et al. Synergistic coupling of NiCo2O4 nanorods onto porous Co3O4 nanosheet surface for tri-functional glucose, hydrogen-peroxide sensors and supercapacitor[J]. Electrochimica Acta, 2020, 330: 135326. |
75 | BARIK R, INGOLE P P. Challenges and prospects of metal sulfide materials for supercapacitors[J]. Current Opinion in Electrochemistry, 2020, 21: 327-334. |
76 | CAO L, TANG G, MEI J, et al. Construct hierarchical electrode with NixCo3-xS4 nanosheet coated on NiCo2O4 nanowire arrays grown on carbon fiber paper for high-performance asymmetric supercapacitors[J]. Journal of Power Sources, 2017, 359: 262-269. |
77 | WANG X, SHI B, HUANG F, et al. Fabrication of hierarchical NiCo2O4@NiCo2S4 core/shell nanowire arrays by an ion-exchange route and application to asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2018, 767: 232-240. |
78 | CHANG L, LI C, OUYANG H, et al. Flexible NiCo2O4@carbon/carbon nanofiber electrodes fabricated by a combined electrospray/electrospinning technique for supercapacitors[J]. Materials Letters, 2019, 240: 21-24. |
79 | LUO J H, WANG J, LIU S, et al. Graphene quantum dots encapsulated tremella-like NiCo2O4 for advanced asymmetric supercapacitors[J]. Carbon, 2019, 146: 1-8. |
80 | ZHANG J N, LIU P, JIN L N, et al. Three-dimensional hierarchical NiCo2O4 nanosheets/carbon nanotubes/carbon cloth as a flexible electrode material for electrochemical capacitors[J]. ChemistrySelect, 2017, 2(27): 8618-8624. |
81 | WANG L, XIE X, DINH K N, et al. Synthesis, characterizations, and utilization of oxygen-deficient metal oxides for lithium/sodium-ion batteries and supercapacitors[J]. Coordination Chemistry Reviews, 2019, 397: 138-167. |
82 | WANG G, YANG Y, HAN D, et al. Oxygen defective metal oxides for energy conversion and storage[J]. Nano Today, 2017, 13: 23-39. |
83 | YAN D, WANG W, LUO X, et al. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor[J]. Chemical Engineering Journal, 2018, 334: 864-872. |
84 | ZHAO T, LIU C, YI F, et al. Hollow N-doped carbon @ O-vacancies NiCo2O4 nanocages with a built-in electric field as high-performance cathodes for hybrid supercapacitor[J]. Electrochimica Acta, 2020, 364: 137260. |
85 | CAO Z, LIU C, HUANG Y, et al. Oxygen-vacancy-rich NiCo2O4 nanoneedles electrode with poor crystallinity for high energy density all-solid-state symmetric supercapacitors[J]. Journal of Power Sources, 2020, 449: 227571. |
[1] | ZHANG Yaojie, ZHANG Chuanxiang, SUN Yue, ZENG Huihui, JIA Jianbo, JIANG Zhendong. Application of coal-based graphene quantum dots in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4340-4350. |
[2] | ZHU Wei, QI Penggang, SU Yinhai, ZHANG Shuping, XIONG Yuanquan. Preparation and properties of bio-oil hierarchical porous carbon electrode materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3077-3086. |
[3] | CHEN Fei, LIU Chengbao, CHEN Feng, QIAN Junchao, QIU Yongbin, MENG Xianrong, CHEN Zhigang. Research progress on graphitic carbon nitride based materials for supercapacitor [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2566-2576. |
[4] | WANG Yuzhuo, LI Gang. S,N co-doped three-dimensional graphene for all-solid-state supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1974-1982. |
[5] | WAN Maohua, ZHANG Xiaohong, AN Xingye, LONG Yinying, LIU Liqin, GUAN Min, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Research progress on the applications of MXene in the fields of biomass based energy storage nanomaterials [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1944-1960. |
[6] | CAI Jiangtao, HOU Liuhua, LAN Yujin, ZHANG Chenchen, LIU Guoyang, ZHU Youyu, ZHANG Jianlan, ZHAO Shiyong, ZHANG Yating. Preparation of pitch-based porous carbon materials and application in supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1895-1906. |
[7] | DU Baoning, ZHAO Shan, LIU Xiangqing, ZHANG Yi, XIAO Yaru, ZHANG Shaofei, LI Tiantian, SUN Jinfeng. Preparation and properties of nano porous CuMn-based oxide electrodes [J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1484-1492. |
[8] | ZHUO Zuyou, SONG Shengnan, HUANG Mingjie, YANG Xuan, LU Beili, CHEN Yandan. Preparation of wheat flour-based hierarchical porous carbon with ultra large specific surface area by synergistic activation of potassium oxalate-urea and its electrochemical energy storage performance [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 925-933. |
[9] | TIAN Tian, LEI Xiping, YU Ting, FAN Kai, SONG Xiaoqi, ZHU Hang. Research progress in carbon materials for flexible supercapacitors [J]. Chemical Industry and Engineering Progress, 2023, 42(2): 884-896. |
[10] | WANG Xiaoliang, YU Zhenqiu, CHANG Leiming, ZHAO Haonan, SONG Xiaoqi, GAO Jingsong, ZHANG Yibo, HUANG Chuanhui, LIU Yi, YANG Shaobin. Research progress in the preparation of hydroxide/oxide supercapacitor electrodes by electrodeposition [J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5272-5285. |
[11] | LONG Yinying, YANG Jian, GUAN Min, YANG Yiluo, CHENG Zhengbai, CAO Haibing, LIU Hongbin, AN Xingye. Research progress of lignin-based materials in electrode materials for hybrid supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4855-4865. |
[12] | ZHANG Wei, AN Xingye, LIU Liqin, LONG Yinying, ZHANG Hao, CHENG Zhengbai, CAO Haibing, LIU Hongbin. Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials [J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783. |
[13] | HU Tingyuan, LI Pingfan, WANG Wei, LIU Zhuang, JU Xiaojie, XIE Rui, CHU Liangyin. Research pogress of functional hydrogel materials for soft supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1578-1593. |
[14] | GUO Guanlun, LIU Rui, YU Yangyang, WANG Yun. Progress on carbon materials derived from waste plastic for supercapacitors [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 781-790. |
[15] | WANG Yilin, LI Shijie. Effect of hydrochloric acid pretreatment on the electrochemical properties of enteromorpha-based activated carbon [J]. Chemical Industry and Engineering Progress, 2022, 41(12): 6454-6460. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |