Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 1755-1764.DOI: 10.16085/j.issn.1000-6613.2020-2007
• Column: Advanced chemical equipment and intelligent systems engineering • Previous Articles Next Articles
YAO Yuman1(), LUO Wenjia1, DAI Yiyang2()
Received:
2020-10-08
Online:
2021-04-14
Published:
2021-04-05
Contact:
DAI Yiyang
通讯作者:
戴一阳
作者简介:
姚羽曼(1996—),女,硕士研究生,研究方向为过程系统工程。E-mail:CLC Number:
YAO Yuman, LUO Wenjia, DAI Yiyang. Research progress of data-driven methods in fault diagnosis of chemical process[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1755-1764.
姚羽曼, 罗文嘉, 戴一阳. 数据驱动方法在化工过程故障诊断中的研究进展[J]. 化工进展, 2021, 40(4): 1755-1764.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2007
名称 | 高斯分布 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
PCA | 是 | 大规模稳态数据的降维效果好[ | 受数据污染遮挡影响大 | 适用于数据降维 |
PLS | 是 | PCA、相关性分析、多元线性回归一体[ | 故障分离不彻底 | 适用于需要预测不可测变量的数据 |
ICA | 否 | 能获得特征相互独立的特征集[ | 需要数据维度中至多一个维度符合高斯分布 | 适用于特征提取 |
GMM | 否 | 能处理多模态数据[ | 易过度拟合,易受噪声影响 | 适用于混合分布的大样本聚类 |
名称 | 高斯分布 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
PCA | 是 | 大规模稳态数据的降维效果好[ | 受数据污染遮挡影响大 | 适用于数据降维 |
PLS | 是 | PCA、相关性分析、多元线性回归一体[ | 故障分离不彻底 | 适用于需要预测不可测变量的数据 |
ICA | 否 | 能获得特征相互独立的特征集[ | 需要数据维度中至多一个维度符合高斯分布 | 适用于特征提取 |
GMM | 否 | 能处理多模态数据[ | 易过度拟合,易受噪声影响 | 适用于混合分布的大样本聚类 |
类型 | 名称 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
决策树 | ID3 C4.5[ CART | 简单,运算快;适用于连续和离散数据;自由学习任何形式的映射[ | 泛化能力弱;过拟合;结果偏向多数类;易受数据不平衡影响 | 属性混合数据的分类[ |
人工神经网络 | BP RBF | 联想记忆;抗干扰能力强 | 易陷入局部极小值 | 数据量较小的回归问题 |
深度学习 | SAE CNN DBN RNN | 提取局部特征;多源信息处理能力;特征提取能力;推测和补全信息的能力 | 信息缺失问题;易局部最优;运算时间长;梯度爆炸 | 数据量较大的强非线性过程 |
支持向量机 | SVM | 不易陷入局部极小 | 对数据缺失和核函数的选择敏感 | 数据量小的高维非线性分类问题 |
集成学习 | bagging boosting stacking | 良好的抗噪能力;减小数据偏置;泛化能力强 | 可能缺失对重要样本的训练;对样本噪声敏感;计算复杂度高;计算时间长 | 数据维度高、结构复杂、特征模糊过程[ |
类型 | 名称 | 优点 | 缺点 | 应用 |
---|---|---|---|---|
决策树 | ID3 C4.5[ CART | 简单,运算快;适用于连续和离散数据;自由学习任何形式的映射[ | 泛化能力弱;过拟合;结果偏向多数类;易受数据不平衡影响 | 属性混合数据的分类[ |
人工神经网络 | BP RBF | 联想记忆;抗干扰能力强 | 易陷入局部极小值 | 数据量较小的回归问题 |
深度学习 | SAE CNN DBN RNN | 提取局部特征;多源信息处理能力;特征提取能力;推测和补全信息的能力 | 信息缺失问题;易局部最优;运算时间长;梯度爆炸 | 数据量较大的强非线性过程 |
支持向量机 | SVM | 不易陷入局部极小 | 对数据缺失和核函数的选择敏感 | 数据量小的高维非线性分类问题 |
集成学习 | bagging boosting stacking | 良好的抗噪能力;减小数据偏置;泛化能力强 | 可能缺失对重要样本的训练;对样本噪声敏感;计算复杂度高;计算时间长 | 数据维度高、结构复杂、特征模糊过程[ |
59 | WU Hao, ZHAO Jinsong. Deep convolutional neural network model based chemical process fault diagnosis[J]. Computers & Chemical Engineering, 2018, 115: 185-197. |
60 | 邵惠鹤. 专家系统及其在石油化工中的应用[J]. 炼油设计, 1989, 19(5): 43-47. |
SHAO Huihe. Expert system and its application in petrochemical industry[J]. Petroleum Refinery Engineering, 1989, 19(5): 43-47. | |
61 | 高金吉. 机泵群实时监测网络和故障诊断专家系统[J]. 中国工程科学, 2001(9): 41-47, 85. |
GAO Jinji. A real-time monitoring network and fault diagnosis expert system for compressors and pumps[J]. Engineering Science, 2001(9): 41-47, 85. | |
62 | 李传坤, 王春利, 高新江. 己内酰胺装置安全运行指导系统研发与应用[J]. 化工进展, 2014, 33(4): 1060-1066. |
LI Chuankun, WANG Chunli, GAO Xinjiang. R&D and application of caprolactam plant safety operation guidance system[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 1060-1066. | |
63 | 王春利. 石化装置异常工况监测预警与操作指导系统研发与应用[J]. 中国安全生产, 2015, 10(2): 58-59. |
1 | GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial and Engineering Chemistry Research, 2013, 52(10): 3543. |
2 | ALZGHOULl A, BACKE B, LOFSTRAND M, et al. Comparing a knowledge-based and a data-driven method in querying data streams for system fault detection: a hydraulic drive system application[J]. Computers in Industry, 2014, 65(8): 1126-1135. |
3 | ALAUDDIN M, KHAN F, IMTIAZ S, et al. A bibliometric review and analysis of data-driven fault detection and diagnosis methods for process systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(32): 10719-10735. |
4 | 陈奥. 基于改进多元统计方法的故障诊断技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
CHEN Ao. The research on the modified multivariate statistics based fault diagnosis technology[D]. Harbin: Harbin Institute of Technology, 2017. | |
5 | 肖应旺, 姚美银, 刘军, 等. 一种用于故障监测的优化核主元分析方法[J]. 计算机与应用化学, 2019, 36(4): 434-438. |
XIAO Yingwang, YAO Meiyin, LIU Jun, et al. Fault detection based on an optimized kernel principal component analysis[J]. Computers and Applied Chemistry, 2019, 36(4): 434-438. | |
6 | YU Jie. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes[J]. Chemical Engineering Science, 2012, 68(1): 506-519. |
7 | 高金凤. 基于数据驱动的非线性过程故障诊断方法研究[D]. 辽宁: 沈阳理工大学, 2014. |
GAO Jinfeng. Research on fault diagnosis of nonlinear process based on data-driven[D]. Liaoning: Shenyang Ligong University, 2014. | |
8 | 梁北辰, 戴景民. 偏最小二乘法在系统故障诊断中的应用[J]. 哈尔滨工业大学学报, 2020, 52(3): 156-164. |
LIANG Beichen, DAI Jingmin. Application of PLS in system fault diagnosis[J]. Journal of Harbin Institute of Technology, 2020, 52(3): 156-164. | |
9 | 赵明娟. 石化复杂系统故障诊断方法研究[D]. 河北: 燕山大学, 2015. |
ZHAO Mingjuan. The study on methods of fault diagnosis for petrochemical complex system[D]. Hebei: Yanshan University, 2015. | |
10 | 李方前. 基于数据驱动的TE过程故障诊断研究[D]. 昆明: 昆明理工大学, 2015. |
LI fangqian. Research on TE process fault diagnosis based on data driven[D]. Kunming: Kunming University of Science and Technology, 2015. | |
11 | 潘俊方. 基于流形学习的强化学习算法研究[D]. 成都: 电子科技大学, 2020. |
PAN Junfang. Research on reinforcement learning algorithm based on manifold learning[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
12 | XUE Zhenxia, ZHANG Roxin, Qin Chuandong, et al. An adaptive twin support vector regression machine based on rough and fuzzy set theories[J]. Neural Computing & Applications, 2020, 32(9): 4709-4732. |
13 | VENKATASUBRAMANIAN V. The promise of artificial intelligence in chemical engineering: Is it here, finally?[J]. AIChE Journal, 2019, 65(2): 466-478. |
14 | BAGHERI M, AKBARI A, MIRBAGHER S A. Advanced control of membrane fouling in filtration systems using artificial intelligence and machine learning techniques: a critical review[J]. Process Safety & Environmental Protection: Transactions of the Institution of Chemical Engineers Part B, 2019, 123(B): 229-252. |
15 | APSEMIDIS A, PSARAKIS S, MOGUERZA J. A review of machine learning kernel methods in statistical process monitoring[J]. Computers & Industrial Engineering, 2020, 142: 106376. |
16 | 焦李成, 杨淑媛, 刘芳, 等. 神经网络七十年: 回顾与展望[J]. 计算机学报, 2016, 39(8): 1697-1716. |
JIAO Licheng, YANG Shuyuan, LIU Fang, et al. Seventy years beyond neural networks: retrospect and prospect[J]. Chinese Journal of Computers, 2016, 39(8): 1697-1716. | |
17 | 文成林, 吕菲亚. 基于深度学习的故障诊断方法综述[J]. 电子与信息学报, 2020, 42(1): 234-248. |
WEN Chenglin, Feiya LYU. Review on deep learning based fault diagnosis[J]. Journal of Electronics & Information Technology, 2020, 42(1): 234-248. | |
18 | 徐继伟, 杨云. 集成学习方法: 研究综述[J]. 云南大学学报(自然科学版), 2018, 40(6): 1082-1092. |
XU Jiwei, YANG Yun. A survey of ensemble learning approaches[J]. Journal of Yunnan University (Natural Sciences Edition), 2018, 40(6): 1082-1092. | |
63 | WANG Chunli. Development and application of abnormal condition monitoring and warning and operation guidance system in petrochemical plant[J]. China Occupational Safety and Health, 2015, 10(2): 58-59. |
19 | 姜如霞, 黄水源, 段文影, 等. C4.5算法的研究及改进[J]. 南昌大学学报(理科版), 2019, 43(1): 90-96. |
JIANG Ruxia, HUANG Shuiyuan, DUAN Wenying, et al. A research and improvement of C4.5 algorithm[J]. Journal of Nanchang University (Natural Science), 2019, 43(1): 90-96. | |
20 | BHOWMICK A, SINGH H. Artificial Intelligence: a modern approach[J]. International Journal of Information and Computing Science, 2018, 5(6): 4. |
21 | MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]// Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 1967: 281-297. |
22 | 朱军, 胡文波. 贝叶斯机器学习前沿进展综述[J]. 计算机研究与发展, 2015, 52(1): 16-26. |
ZHU Jun, HU Wenbo. Recent advances in Bayesian machine learning[J]. Journal of Computer Research and Development, 2015, 52(1): 16-26. | |
23 | 赵月南. 基于贝叶斯网络的电机故障诊断研究[D]. 杭州: 浙江大学, 2016. |
ZHAO Yuenan. The research of motor fault detection based on Bayesian network[D]. Hangzhou: Zhejiang University, 2016. | |
24 | BAUM L, PETRIE T, SOULES G, et al. A maximization technique occurring in statistical analysis of probabilistic functions of Markov chains[J]. The Annals of Mathematical Statistics, 1970, 41(1): 164-171. |
25 | BAUM L. An inequality and associated maximization technique in statistical estimation for probabilistic function of Markov processes[J]. Journal of Inequalities in Pure and Applied Mathematics, 1972(3): 1-8. |
26 | 解亚萍, 赵鹏, 党伟明. 基于KMC-KECA的间歇发酵过程的故障诊断[J]. 石油化工自动化, 2016, 52(6): 21-26. |
XIE Yaping, ZHAO Peng, DANG Weiming. Fault diagnosis for batch fermentation process based on KMC-KECA[J]. Automation in Petro-Chemical Industry, 2016, 52(6): 21-26. | |
27 | 刘丽云, 吕玉海, 牛鲁娜, 等. 基于K-means聚类的TE过程故障诊断与识别[J]. 自动化与仪器仪表, 2020(7): 5-11. |
LIU Liyun, Yuhan LYU, NIU Luna, et al. Fault diagnosis and identification based on K-means clustering of Tennessee Eastman process[J]. Automation and Instrumentation, 2020(7): 5-11. | |
28 | LI Chuankun, ZHAO Dongfeng, MU Shanjun, et al. Fault diagnosis for distillation process based on CNN-DAE[J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 598-604. |
29 | ARUNTHAVANATHAN R, KHAN F, AHMED S, et al. Fault detection and diagnosis in process system using artificial intelligence-based cognitive technique[J]. Computers and Chemical Engineering, 2020, 134: 106-697. |
30 | ZHENG Songfeng, ZHAO Jin. States identification of complex chemical process based on unsupervised learning[J]. Computer Aided Chemical Engineering, 2018, 44: 2239-2244. |
31 | 张祥, 崔哲, 董玉玺, 等. 基于VAE-DBN的故障分类方法在化工过程中的应用[J]. 过程工程学报, 2018, 18(3): 590-594. |
ZHANG Xiang, CUI Zhe, DONG Yuxi, et al. Application of fault classification method based on VAE-DBN in chemical process[J]. The Chinese Journal of Process Engineering, 2018, 18(3): 590-594. | |
32 | 赵帅. 基于集成学习的高斯过程回归软测量建模方法研究[D]. 无锡: 江南大学, 2018. |
ZHAO Shuai. Research of Gaussian process regression soft sensor modeling based on Ensemble Learning[D]. Wuxi: Southern Yangtze University, 2018. | |
33 | 汪庆宁, 杨鑫, 戴一阳. 基于PPA的多元统计分析方法在过程故障诊断的应用[J]. 计算机与应用化学, 2018, 35(10): 821-832. |
WANG Qingning, YANG Xin, DAI Yiyang. The multivariate statistics analysis method based on PPA and applications in process fault diagnosis[J]. Computers and Applied Chemistry, 2018, 35(10): 821-832. | |
34 | 钱锟. 基于组合KPCA与改进ELM的工业过程故障诊断研究[D]. 重庆: 重庆大学, 2016. |
QIAN Kun. Research on industrial process fault diagnosis based on combined KPCA and improved ELM[D]. Chongqing: Chongqing University, 2016. | |
35 | 曹玉苹, 卢霄, 田学民, 等. 基于动态单类随机森林的非线性过程监控方法[J]. 化工学报, 2017, 68(4): 1459-1465. |
CAO Yuping, LU Xiao, TIAN Xuemin, et al. Nonlinear process monitoring using dynamic one-class random forest[J]. CIESC Journal, 2017, 68(4): 1459-1465. | |
36 | 夏永彬. 聚合釜粗糙集及神经网络故障诊断研究[D]. 秦皇岛: 燕山大学, 2018. |
XIA Yongbin. Research on the fault diagnosis of polymerizer based on Rough Set and Neural Network[D]. Qinhuangdao: Yanshan University, 2018. | |
37 | NORAZWAN M N, MOHD A H, CHE R, et al. Multi-scale kernel Fisher discriminant analysis with adaptive neurofuzzy inference system (ANFIS) in fault detection and diagnosis framework for chemical process systems[J]. Neural Computing and Applications, 2020(32): 9283-9297. |
38 | YU Wanke, ZHAO Chunhui. Broad convolutional neural network based industrial process fault diagnosis with incremental learning capability[J]. IEEE Transactions on Industrial Electronics, 2020, 67(6): 5081-5091. |
39 | Feiya LYU, WEN Chenglin, LIU Meiqin, et al. Weighted time series fault diagnosis based on a stacked sparse autoencoder[J]. Journal of Chemometrics, 2017, 31(9): e2912. |
40 | 张展博, 王振雷, 王昕. 基于正交局部慢性特征的故障检测方法[J]. 清华大学学报(自然科学版), 2020, 60(8): 693-700. |
ZHANG Zhanbo, WANG Zhenlei, WANG Xin. Fault detection based on orthogonal local slow features[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(8): 693-700. | |
41 | 冀丰偲, 余云松, 张早校. LDA _SVM方法在化工过程故障诊断中的应用[J]. 高校化学工程学报, 2020, 34(2): 487-494. |
JI Fengca, YU Yunsong, ZHANG Zaoxiao. Application of LDA and SVM method in fault diagnosis of chemical process[J]. Journal of Chemical Engineering of Chinese Universities, 2020, 34(2): 487-494. | |
42 | 任玉佳, 王骥, 田文德. 基于特征工程和KELM的化工过程故障检测与识别[J]. 高校化学工程学报, 2019, 33(5): 1271-1284. |
REN Yujia, WANG Ji, TIAN Wende. Fault detection and identification in chemical processes based on feature engineering and kernel extreme learning machine[J]. Journal of Chemical Engineering of Chinese Universities, 2019, 33(5): 1271-1284. | |
43 | 易维淋. 基于极限学习机的工业过程故障检测与诊断方法研究[D]. 青岛: 中国石油大学(华东), 2017. |
YI Weilin. Fault detection and diagnosis of industrial processes based on extreme learning machine[D]. Qingdao: China University of Petroleum (East China), 2017. | |
44 | HU Zhixin, JIANG Peng. An imbalance modified deep neural network with dynamical incremental learning for chemical fault diagnosis[J]. IEEE Transactions on Industrial Electronics, 2019, 66(1): 540-550. |
45 | 夏丽莎, 杨玉英, 方华京. 基于EasyEnsemble的化工过程故障诊断性能改进[J]. 控制理论与应用, 2017, 34(1): 49-53. |
XIA Lisha, YANG Yuying, FANG Huajing. Fault diagnosis performance improvement for chemical process based on EasyEnsemble method[J]. Control Theory & Applications, 2017, 34(1): 49-53. | |
46 | ASKARIAN M, ZARGHAMI R, FARAHANI F J, et al. Fault diagnosis of chemical processes considering fault frequency via Bayesian network[J]. Canadian Journal of Chemical Engineering, 2016, 94(12): 2315-2325. |
47 | 张远绪, 程换新. 基于改进的DAEN在TE过程故障诊断中的应用研究[J]. 电子测量技术, 2019, 42(11): 56-60. |
ZHANG Yuanxu, CHENG Huanxin. Application of improved DAEN in fault diagnosis of TE process[J]. Electronic Measurement Technology, 2019, 42(11): 56-60. | |
48 | PENG Peng, ZHANG Wenjia, ZHANG Yi, et al. Cost sensitive active learning using bidirectional gated recurrent neural networks for imbalanced fault diagnosis[J]. Neurocomputing, 2020, 407: 232-245. |
49 | 罗磊, 程非凡, 邱彤, 等. 改进CCM算法检测外部扰动下系统变量间的时滞和因果关系[J]. 化工学报, 2016, 67(12): 5122-5130. |
LUO Lei, CHENG Feifan, QIU Tong, et al. An improved convergent cross mapping algorithm for causality identification and time delay analysis between systemic variables under external disturbance[J]. CIESC Journal, 2016, 67(12): 5122-5130. | |
50 | 冯立伟, 李元, 张成, 等. 基于时空近邻标准化和局部离群因子的复杂过程故障检测[J]. 控制理论与应用, 2020, 37(3): 651-657. |
FENG Liwei, LI Yuan, ZHANG Cheng, et al. Time-space neighborhood standardization-local outlier factor based fault detection for complex process[J]. Control Theory & Applications, 2020, 37(3): 651-657. | |
51 | 宋晓云, 田文德, 靳满满. 非稳态过程故障诊断方法研究[J]. 现代化工, 2016, 36(8): 182-185. |
SONG Xiaoyun, TIAN Wende, JIN Manman. Fault diagnosis method for unsteady process[J]. Modern Chemical Industry, 2016, 36(8): 182-185. | |
52 | 戴一阳, 陈宁, 赵劲松, 等. 人工免疫系统在间歇化工过程故障诊断中的应用[J]. 化工学报, 2009, 60(1): 172-176. |
DAI Yiyang, CHEN Ning, ZHAO Jinsong, et al. Application of AIS to batch chemical process fault diagnosis[J]. CIESC Journal, 2009, 60(1): 172-176. | |
53 | ZHAO Jinsong, SHU Yidan, ZHU Jianfeng, et al. An online fault diagnosis strategy for full operating cycles of chemical processes[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5015-5027. |
54 | TANATAVIKOR H, YAMASHITA Y. Batch process monitoring based on fuzzy segmentation of multivariate time-series[J]. Journal of Chemical Engineering of Japan, 2017, 50(1): 53-63. |
55 | BARRAGAN J F, FONTES C H, EMBIRUCU M. A wavelet-based clustering of multivariate time series using a multiscale SPCA approach[J]. Computers & Industrial Engineering, 2016, 95: 144-155. |
56 | 王楠, 张日东, 吴胜. 一种基于LSTM和MLP结合的化工过程故障诊断方法: CN111123894A[P], 2020-05-08. |
WANG Nan, ZHANG Ridong, WU Sheng. A fault diagnosis method for chemical process based on LSTM and MLP: CN111123894A[P], 2020-05-08. | |
57 | PARK Pangun, DI MARCO P, SHIN Hyejeon, et al. Fault detection and diagnosis using combined autoencoder and long short-term memory network[J]. Sensors, 2019, 19(21): 4612. |
58 | 魏小林. 基于自适应PPA及贝叶斯网络的化工过程故障诊断方法研究[D]. 重庆: 重庆理工大学, 2020. |
WEI Xiaolin. Study on fault diagnosis method of chemical process based on adaptive PPA and Bayesian network[D]. Chongqing: Chongqing University of Technology, 2020. |
[1] | ZHU Jiaxing, HAO Lin, LIU Guozhao, WEI Hongyuan. Research progress and prospect on inherent safety assessment methods for chemical processes [J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4009-4024. |
[2] | LI Zhibin, TANG Hui, LUO Dawei, YING Qiao. Progress in chemical recycling of waste PET and preparation of unsaturated polyester resins [J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3279-3292. |
[3] | LI Xintong, CHEN Zhibing, WEI Zhiqiang, LI Sutong, CHEN Xu, SONG Kai. Convolution neural network with attention mechanism of input data for quality prediction of fluorine chemical products [J]. Chemical Industry and Engineering Progress, 2022, 41(2): 593-600. |
[4] | TAN Xiao, QI Suitao, ZHOU Yiming, SHI Libin, CHENG Guangxu, YI Chunhai, YANG Bolun. Direct catalytic reduction of NO by bimetallic ferromanganese catalyst under non-thermal plasma [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5850-5857. |
[5] | SUN Peijie, WANG Linping, XU Lejin. Advances in the treatment of cyanide in coking wastewater [J]. Chemical Industry and Engineering Progress, 2021, 40(S1): 386-396. |
[6] | LI Xiang, WANG Xueqian, LI Pengfei, WANG Langlang, NING Ping, MA Yixing, CAO Rui, ZHONG Lei. Progress on characteristic components analysis of blast furnace gas and its influence on desulfurization process [J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6629-6639. |
[7] | Zhiyun ZOU, Wenchao ZHU, Yingli LIU, Lei MENG, Ning GUO, Meng YU. Discussion on the development trend of small scale special fine chemical process automation and informatization [J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 269-275. |
[8] | Xueliang YIN, Heli MA, Changwei GONG, Chengwu DU, Tingquan HAN. Promoting law and mechanism of TiO2 addition on sintering of CaAl4O7 refractory [J]. Chemical Industry and Engineering Progress, 2020, 39(S1): 200-205. |
[9] | Xinyu MENG, Jie XU, Jie WAN, Yanjun LIU, Xiaoli WANG, Jun ZHANG, Feng ZHENG, Jianfei KAN, Gongde WU. Research and industrialization progress in synthesis of glycerol carbonate [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3739-3749. |
[10] | Likun ZHOU, Qingfeng GE, Houkai TENG. Progress in preparation of biobased compounds from energy plant Jerusalem artichoke [J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2612-2623. |
[11] | Ronghui ZHU,Fengyu GAO,Xiaoning TANG,Yangyang GUO,Yang LI. Synthesis of amorphous MnOx/SiO2 catalyst and the mechanismfor low-temperature catalytic oxidation of formaldehyde [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5402-5409. |
[12] | Jianbao YUAN,Zheng WANG,Yifan XU,Yanxia YANG,Xiaoping JIA,Fang WANG. Risk propagation path of cascading fault in chemical process based on edge load distribution in complex network [J]. Chemical Industry and Engineering Progress, 2019, 38(08): 3525-3533. |
[13] | DENG Qijiu, FENG Shuaishuai, TIAN Congcong, HUI Peng, YAN Yinglin, YANG Rong. Research progress on the electrochemical storage mechanisms of metalorganic frameworks in secondary batteries [J]. Chemical Industry and Engineering Progress, 2019, 38(06): 2674-2681. |
[14] | LIU Yangyu, JIA Hongwei, PAN Yongtai, ZHENG Shuilin, SUN Zhiming, LI Mingzhe. Reaction products and kinetic process for the calcination of opoka with ammonium sulfate [J]. Chemical Industry and Engineering Progress, 2018, 37(12): 4543-4550. |
[15] | LI Hong, MENG Ying, LI Xingang, GAO Xin. State-of-the-arts review of the research process for distillation process intensification technology [J]. Chemical Industry and Engineering Progress, 2018, 37(04): 1212-1228. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |