Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (3): 1142-1160.DOI: 10.16085/j.issn.1000-6613.2020-2124
• Special column:Green biomanufacturing • Previous Articles Next Articles
ZHANG Xiaojian1,2(), LIU Qian1,2, LIU Zhiqiang1,2(), ZHENG Yuguo1,2
Received:
2020-10-22
Online:
2021-03-17
Published:
2021-03-05
Contact:
LIU Zhiqiang
张晓健1,2(), 刘倩1,2, 柳志强1,2(), 郑裕国1,2
通讯作者:
柳志强
作者简介:
张晓健(1980—),男,博士,讲师,研究方向为生物催化与转化。E-mail:基金资助:
CLC Number:
ZHANG Xiaojian, LIU Qian, LIU Zhiqiang, ZHENG Yuguo. Stereoselective carbonyl reductases and their application in chiral alcohols synthesis[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1142-1160.
张晓健, 刘倩, 柳志强, 郑裕国. 立体选择性羰基还原酶及其在手性醇合成中的应用[J]. 化工进展, 2021, 40(3): 1142-1160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-2124
94 | ZHANG J, WITHOLT B, LI Z. Efficient NADPH recycling in enantioselective bioreduction of a ketone with permeabilized cells of a microorganism containing a ketoreductase and a glucose 6-phosphate dehydrogenase[J]. Advanced Synthesis & Catalysis, 2006, 348: 429-433. |
95 | HE J, MAO X, SUN Z, et al. Microbial synthesis of ethyl (R)-4,4,4-trifluoro-3-hydroxybutanoate by asymmetric reduction of ethyl 4,4,4-trifluoroacetoacetate in an aqueous-organic solvent biphasic system[J]. Biotechnology Journal, 2007, 2: 260-265. |
96 | OLIVEIRA S S D, DIAS L R S, BARBOSA N C, et al. Enantioselective bioreduction of ethyl 4,4,4-trihalide-3-oxobutanoate by Kluyveromyces marxianus[J]. Tetrahedron Letters, 2013, 24: 3067-3070. |
97 | KARA S, SPICKERMANN D, WECKBECKER A. Bioreductions catalyzed by an alcohol dehydrogenase in non-aqueous media[J]. ChemCatChem, 2014, 6: 973-976. |
98 | PATEL R, CHU L, NANDURI V, et al. Enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro[4.5]decane-7,9-dione[J]. Tetrahedron Asymmetr, 2005, 16(16): 2778-2783. |
99 | GOLDBERG S L, NANDURI V B, CHU L, et al. Enantioselective microbial reduction of 6-oxo-8-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-8-azaspiro [4.5] decane-7,9- dione: cloning and expression of reductases[J]. Enzyme and Microbial Technology, 2006, 39(7): 1441-1450. |
100 | ROBERGE C, KING A, PECORE V, et al. Asymmetric bioreduction of a keto ester to its corresponding (S)-hydroxy ester by Microbacterium sp. MB 5614[J]. Journal of Fermentation & Bioengineering, 1996, 81(6): 530-533. |
101 | LIANG J, BORUP B, MITCHELL V, et al. Ketoreductases for the production of (S,E)-methyl 2-(3-(3-(2-(7-chloroquinolin-2-yl)vinyl)phenyl)-3-hroxypropyl)benzoate: US20130078692[P]. 2012-01-03. |
102 | TSUTSUMI K, KATAYAMA T, UTSUMI N, et al. Practical asymmetric hydrogenation of 3-quinuclidinone catalyzed by the XylSkewphos/PICA-Ruthenium() complex[J]. Organic Process Research & Development, 2009, 13(3): 625-628. |
103 | UZURA A, NOMOTO F, SAKODA A, et al. Stereoselective synthesis of (R)-3-quinuclidinol through asymmetric reduction of 3-quinuclidinone with 3-quinuclidinone reductase of Rhodotorula rubra[J]. Applied Microbiology and Biotechnology, 2009, 83(4): 617-626. |
104 | CHEN Y H, JIANG Q H, SUN L L, et al. Magnetic combined cross-cinked enzyme cggregates of ketoreductase and alcohol dehydrogenase: an efficient and stable biocatalyst for asymmetric synthesis of (R)-3-quinuclidinol with regeneration of coenzymes in situ[J]. Catalysts, 2018, 8(8): 334. |
105 | CHEN Q, XIE B, ZHOU L, et al. A tailor-made self-sufficient whole-cell biocatalyst enables scalable enantioselective synthesis of (R)-3-quinuclidinol in a high space-time yield[J]. Organic Process Research & Development, 2019, 23(9): 1813-1821. |
1 | LOCKHART R, MARTINELLI R. Proposed correlation of data for isothermal two-phase, two-component flow in pipes[J]. Chemical Engineering Progress, 1949, 45(1): 39-48. |
2 | NI Y, XU J H. Biocatalytic ketone reduction: a green and efficient access to enantiopure alcohols[J]. Biotechnology Advances, 2012, 30: 1279-1288. |
106 | CHEN Y Z, LIN H, XU X Y, et al. Preparation the key intermediate of angiotensin‐converting enzyme (ACE) inhibitors: high enantioselective production of ethyl (R)‐2‐hydroxy‐4‐phenylbutyrate with Candida boidinii CIOC21[J]. Advanced Synthesis & Catalysis, 2010, 350(3): 426-430. |
107 | 汪云, 王利群, 何玉财, 等. 两相体系中固定化黏红酵母CCZU-G5催化合成(R)-2-羟基-4-苯基丁酸乙酯[J]. 化工进展, 2013, 32(3): 661-665. |
WANG Yun, WANG Liqun, HE Yucai, et al. Biosynthesis of ethyl(R)-2-hydroxy-4-phenylbutyrate catalyzed by immobilized Rhodotorula mucilaginosa CCZU-G5 in biphasic system[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 661-665. | |
108 | XIA S W, CHEN Y Z, ZHOU J R, et al. Enzyme-catalyzed asymmetric synthesis of optically active (R)-and (S)-ethyl-4-phenyl-4-hydroxybutyrate with microbial cells[J]. Biocatalysis and Biotransformation, 2013, 31(1): 66-70. |
109 | ZHANG W, NI Y, SUN Z, et al. Biocatalytic synthesis of ethyl(R)-2-hydroxy-4-phenylbutyrate with Candida krusei SW2026: a practical process for high enantiopurity and product titer[J]. Process Biochemistry, 2009, 44(11): 1270-1275. |
110 | LI N, NI Y, SUN Z. Purification and characterization of carbonyl reductase from Candida krusei SW 2026 involved in enantioselective reduction of ethyl 2-oxo-4-phenylbutyrate[J]. Journal of Molecular Catalysis B: Enzymatic, 2010, 66(1/2): 190-197. |
111 | QIAN X L, PAN J, SHEN N D, et al. Efficient production of ethyl (R)-2-hydroxy-4-phenylbutyrate using a cost-effective reductase expressed in Pichia pastoris[J]. Biochemical Engineering Journal, 2014, 91: 72-77. |
112 | WANG Z, ZHOU S, ZHANG S, et al. Semi-rational engineering of a thermostable aldo-keto reductase from Thermotoga maritima for synthesis of enantiopure ethyl-2-hydroxy-4-phenylbutyrate (EHPB)[J]. Scientific Reports, 2017, 7(1): 4007. |
113 | QIAN W Z, OU L, LI C X, et al. Evolution of glucose dehydrogenase for cofactor regeneration in bioredox processes with denaturing agents[J]. ChemBioChem, 2020, 21(18): 2680-2688. |
114 | JEONG M, LEE Y M, HONG S H,et al. Optimization of enantioselective synthesis of methyl (R)-2-chloromandelate by whole cells of Saccharomyces cerevisiae[J]. Biotechnology Letters, 2010, 32(10): 1529-1531. |
115 | NI Y, LI C X, ZHANG J, et al. Efficient reduction of ethyl2-oxo-4-phenylbutyrate at 620g·L-1 by a bacterial reductase with broad substrate spectrum[J]. Advance Synthesis & Catalysis, 2011, 353(8): 1213-1217. |
116 | MA H, YANG L, NI Y, et al. Stereospecific reduction of rethyl o‐chlorobenzoylformate at 300g·L-1 without additional cofactor using a carbonyl reductase mined from Candida glabrata[J]. Advanced Synthesis & Catalysis, 2012, 354(9): 1765-1772. |
117 | NI Y, PAN J, MA H M, et al. Bioreduction of methyl o-chlorobenzoylformate at 500g·L-1 without external cofactors for efficient production of enantiopure clopidogrel intermediate[J]. Tetrahedron Letters, 2012, 53(35): 4715-4717. |
118 | ZHENG G W, LIU Y Y, CHEN Q, et al. Preparation of structurally diverse chiral alcohols by engineering ketoreductase CgKR1[J]. ACS Catalysis, 2017, 7(10): 7174-7181. |
119 | NELSON T D, LEBLOND C R, FRANTZ D E, et al. Stereoselective synthesis of a potent thrombin inhibitor by a novel P2-P3 lactone ring opening[J]. Journal of Organic Chemistry, 2004, 69(11): 3620-3627. |
120 | BALÁZS E, ANTAL S, GÁBOR S, et al. Stereoselective production of (S)-1-aralkyl- and 1-arylethanols by freshly harvested and lyophilized yeast cells[J]. Tetrahedron Asymmetry, 2006, 17(2): 268-274. |
121 | SIMON R C, BUSTO E, RICHTER N, et al. Chemoenzymatic synthesis of enantiomerically pure syn‐configured 1‐aryl‐3‐methylisochroman derivatives[J]. European Journal of Organic Chemistry, 2014(1): 111-121. |
122 | HAQ S F, SHANBHAG A P, KARTHIKEYAN S, et al. A strategy to identify a ketoreductase that preferentially synthesizes pharmaceutically relevant (S)-alcohols using whole-cell biotransformation[J]. Microbial Cell Factories, 2018, 17(1): 192. |
123 | GIACOMINI D, GALLETTI P, QUINTAVALLA A, et al. Highly efficient asymmetric reduction of arylpropionic aldehydes by horse liver alcohol dehydrogenase through dynamic kinetic resolution[J]. Cheminform, 2007, 39: 4038-4040. |
124 | GALLETTI P, EMER E, GUCCIARDO G, et al. Chemoenzymatic synthesis of (2S)-2-arylpropanols through a dynamic kinetic resolution of 2-arylpropanals with alcohol dehydrogenases[J]. Organic & Biomolecular Chemistry, 2010, 8(18): 4117-4123. |
125 | FRIEST J A, MAEZATO Y, BROUSSY S, et al. Use of a robust dehydrogenase from an archael hyperthermophile in asymmetric catalysis-dynamic reductive kinetic resolution entry into (S)-Profens[J]. Journal of the American Chemical Society, 2010, 132(17): 5930-5931. |
126 | QUAGLIA D, PORI M, GALLETTI P, et al. His-tagged horse liver alcohol dehydrogenase: immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols[J]. Process Biochemistry, 2013, 48(5/6): 810-818. |
127 | KEARNS J, KAYSER M M. Application of yeast-catalyzed reductions to synthesis of (2R,3S)-phenylisoserine[J]. Tetrahedron Letters, 1994, 35(18): 2845-2848. |
128 | PATEL R N, BANERJEE A, MCNAMEE C G, et al. Enzymatic reduction method for the preparation of compounds useful for preparing taxanes: US5686298 A[P]. 1995. |
129 | APPLEGATE G A, CHELOHA R W, NELSON D L, et al. A new dehydrogenase from Clostridium acetobutylicum for asymmetric synthesis: dynamic reductive kinetic resolution entry into the taxotere side chain[J]. Chemical Communications, 2011, 47(8): 2420-2422. |
130 | LIANG J, JENNE S J, MUNDORFF E, et al. Methods of using engineered ketoreductase polypeptides for the stereoselective reduction of acetophenones: US8512973[P]. 2013-08-20. |
131 | LI H, WANG R, WANG A, et al. Rapidly and precisely crosslinked enzymes using bio-orthogonal chemistry from cell lysate for the synthesis of (S)-1-(2,6-dichloro-3-fluorophenyl) ethanol[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(16): 6466-6478. |
132 | CHING C, GRUBER J M, HUISMAN G W, et al. Ketoreductases and uses thereof: US8415127[P]. 2008-02-08. |
133 | PATEL R N, CHU L, MUELLER R. Diastereoselective microbial reduction of (S)-[3-chloro-2-oxo-1-(phenylmethyl)propyl]carbamic acid,1,1-dimethylethyl ester[J]. Tetrahedron Asymmetry, 2003, 14(20): 3105-3109. |
134 | WU K, ZHENG K, XIONG L, et al. Efficient synthesis of an antiviral drug intermediate using an enhanced short-chain dehydrogenase in an aqueous-organic solvent system[J]. Applied Microbiology and Biotechnology, 2019, 103(11): 4417-4427. |
135 | YADAV J S, REDDY P T, NANDA S, et al. Stereoselective synthesis of (R)-(-)-denopamine, (R)-(-)-tembamide and (R)-(-)-aegeline via asymmetric reduction of azidoketones by Daucus carota in aqueous medium[J]. Tetrahedron Asymmetry, 2002, 12(24): 3381-3385. |
136 | GOSWAMI J, BEZBARUAH R L, GOSWAMI A, et al. A convenient stereoselective synthesis of (R)-(-)-denopamine and (R)-(-)-salmeterol[J]. Cheminform, 2002, 12(24): 3343-3348. |
137 | ZHANG R, REN J, WANG Y, et al. Isolation and characterization of a novel Rhodococcus strain with switchable carbonyl reductase and para-acetylphenol hydroxylase activities[J]. Journal of Industrial Microbiology & Biotechnology, 2013, 40(1): 11-20. |
138 | LIN H, CHEN Y Z, XU X Y, et al. Preparation of key intermediates of adrenergic receptor agonists: highly enantioselective production of (R)-α-halohydrins with Saccharomyces cerevisiae CGMCC 2.396[J]. Journal of Molecular Catalysis B: Enzymatic, 2009, 57(1/2/3/4): 1-5. |
139 | ROCHA L C, FERREIRA H V, PIMENTA E F, et al. Biotransformation of α-bromoacetophenones by the marine fungus Aspergillus sydowii[J]. Marine Biotechnology, 2010, 12(5): 552-557. |
140 | TOKOSHIMA D, HANAYA K, SHOJI M, et al. Whole-cell yeast-mediated preparation of (R)-2-chloro-1-(3-nitrophenyl)ethanol as a synthetic precursor for (R)-phenylephrine[J]. Journal of Molecular Catalysis B: Enzymatic, 2013, 97: 95-99. |
3 | MATSUDA T, YAMANAKA R, NAKAMURA K. Biocatalytic asymmetric reduction of C̿ O and activated C̿ C bonds in stereoselective synthesis: stereoselective synthesis of drugs and natural products[M]. John Wiley & Sons, Inc, 2013. |
4 | CHEN X, ZHENG Y G, LIU Z Q, et al. Stereoselective determination of 2-benzamidomethyl-3-oxobutanoate and methyl-2-benzoylamide-3-hydroxybutanoate by chiral high-performance liquid chromatography in biotransformation[J]. Journal of Chromatography B, 2015, 974: 57-64. |
141 | XU G C, YU H L, ZHANG X Y, et al. Access to optically active aryl halohydrins using a substrate-tolerant carbonyl reductase discovered from Kluyveromyces thermotolerans[J]. ACS Catalysis, 2012, 2(12): 2566-2571. |
142 | ALVIZO O, COLLIER S J, HENNEMANN J, et al. Ketoreductase polypeptides for the preparation of phenylephrine: US9834758[P]. 2017-12-05. |
143 | PENG G J, CHO Y C, FU T K, et al. Enantioselective synthesis of (S)-phenylephrine by recombinant Escherichia coli cells expressing the short-chain dehydrogenase/reductase gene from Serratia quinivorans BCRC 14811[J]. Process Biochemistry, 2013, 48(10): 1509-1515. |
144 | KUAN Y C, XU Y B, WANG W C, et al. Enantioselective synthesis of (R)-phenylephrine by Serratia marcescens BCRC10948 cells that homologously express SM_SDR[J]. Enzyme & Microbial Technology, 2018, 110: 14-19. |
145 | Alba DÍAZ-RODRÍGUEZ, Wioleta BORZĘCKA, LAVANDERA Iván, et al. Stereodivergent preparation of valuable γ- or δ-hydroxy esters and lactones through one-pot cascade or tandem chemoenzymatic protocols[J]. ACS Catalysis, 2013, 4(2): 386-393. |
146 | JI X J, HUANG H, ZHU J G, et al. Engineering Klebsiella oxytoca for efficient 2,3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene[J]. Applied Microbiology & Biotechnology, 2010, 85(6): 1751-1758. |
147 | WANG Z, SONG Q Q, YU M, et al. Characterization of a stereospecific acetoin(diacetyl) reductase from Rhodococcus erythropolis WZ010 and its application for the synthesis of (2S,3S)-2,3-butanediol[J]. Applied Microbiology & Biotechnology, 2014, 98(2): 641-650. |
148 | HE Y Z, CHEN F X, SUN M J, et al. Efficient (3S)-acetoin and (2S,3S)-2,3-butanediol production from meso-2,3-butanediol using whole-cell biocatalysis[J]. Molecules, 2018, 23(3): 691. |
149 | SINGH A, CHISTI Y, BANERJEE U C. Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis[J]. Process Biochemistry, 2012, 47(12): 2398-2404. |
150 | VITALE P, D'INTRONO C, PERNA F M, et al. Kluyveromyces marxianus CBS 6556 growing cells as a new biocatalyst in the asymmetric reduction of substituted acetophenones[J]. Tetrahedron Asymmetry, 2013, 44(35): 389-394. |
151 | ROCHA-MARTÍN J, VEGA D, BOLIVAR J M, et al. Characterization and further stabilization of a new anti-Prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds[J]. Bioresource Technology, 2012, 103(1): 343-350. |
152 | WU X, ZHANG C, ORITA I, et al. Thermostable alcohol dehydrogenase from Thermococcus kodakarensis KOD1 for enantioselective bioconversion of aromatic secondary alcohols[J]. Applied and Environmental Microbiology, 2013, 79(7): 2209-2217. |
153 | ZHANG R Z, GENG Y W, XU Y, et al. Carbonyl reductase SCRII from Candida parapsilosis catalyzes anti-Prelog reaction to (S)-1-phenyl-1,2-ethanediol with absolute stereochemical selectivity[J]. Bioresource Technology, 2011, 102(2): 483-489. |
154 | ZHANG R Z, ZHANG B T, XU Yet al. Efficicent (R)-phenylethanol production with enantioselectivity-alerted (S)-carbonyl reductase II and NADPH regeneration[J]. PLoS One, 2013, 8(12): e83586. |
155 | RAO J X, ZHANG R Z, LIANG H B, et al. Efficient chiral synthesis by Saccharomyces cerevisiae spore encapsulation of Candida parapsilosis Glu228Ser/(S)-carbonyl reductase Ⅱ and Bacillus sp. YX-1 glucose dehydrogenase in organic solvents[J]. Microbial Cell Factories, 2019, 18(1): 87. |
156 | QIN F, QIN B, MORI T, et al. Engineering of Candida glabrata ketoreductase 1 for asymmetric reduction of α-halo ketones[J]. ACS Catalysis, 2016, 6: 6135-6140. |
5 | LUO X, WANG Y J, ZHENG Y G, et al. Cloning and characterization of a NADH-dependent aldo-keto reductase from a newly isolated Kluyveromyces lactis XP1461[J]. Enzyme and Microbial Technology, 2015, 77: 68-77. |
6 | KALUZNA W A, MATSUDA T, SEWELL A K, et al. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions[J]. Journal of the American Chemical Society, 2004, 126: 12827-12832. |
7 | XU Q, TAO W Y, HUANG H, et al. Highly efficient synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate by a novel carbonyl reductase from Yarrowia lipolytica and using mannitol or sorbitol as cosubstrate[J]. Biochemical Engineering Journal, 2016, 106: 61-67. |
8 | CHEN X, LIU Z Q, HUANG J F, et al. Asymmetric synthesis of optically active methyl-2-benzamido-methyl-3-hydroxy-butyrate by robust short-chain alcohol dehydrogenases from Burkholderia gladioli[J]. Chemical Communication, 2015, 51(61): 12328-12331. |
9 | WANG L J, LI C X, NI Y, et al. Highly efficient synthesis of chiral alcohols with a novel NADH-dependent reductase from Streptomyces coelicolor[J]. Biotechnology Technology, 2011, 102: 7023-7028. |
10 | CHEN X, LIU Z Q, LIN C P, et al. Chemoenzymatic synthesis of (S)-duloxetine using carbonyl reductase from Rhodosporidium toruloides[J]. Bioorganic Chemistry, 2016, 65: 82-89. |
11 | HOLLMANN F, ARENDS I W C E, HOLTMANN D. Enzymatic reductions for the chemist[J]. Green Chemistry, 2011, 13(9): 2285-2314. |
12 | ZHENG Y G, YIN H H, YU D F, et al. Recent advances in biotechnological applications of alcohol dehydrogenases[J]. Applied Microbiology & Biotechnology, 2017, 101(3): 1-15. |
13 | FREY J, RUSCHE H, SCHINK B, et al. Cloning, functional expression and characterization of a bifunctional 3-hydroxybutanal dehydrogenase/reductase involved in acetone metabolism by Desulfococcus biacutus[J]. BMC Microbiology, 2016, 16(1): 280. |
14 | PENNING T M. The aldo-keto reductases (AKRs): overview[J]. Chemico-Biological Interactions, 2015, 234: 236-246. |
15 | JORNVALL H, PERSSON M, JEFFERY J. Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type[J]. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78(7): 4226-4230. |
16 | PERSSON B, KROOK M, JÖRNVALL H. Characteristics of short-chain alcohol dehydrogenases and related enzymes[J]. European Journal of Biochemistry, 2010, 200(2): 537-543. |
17 | KALLBERG Y, OPPERMANN U, PERSSON B. Classification of the short-chain dehydrogenase/reductase superfamily using hidden Markov models[J]. FEBS Journal, 2010, 277(10): 2375-2386. |
18 | KAVANAGH K, JORNVALL H, PERSSON B, et al. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes[J]. Cellular and Molecular Life Sciences, 2008, 65(24): 3895-3906. |
19 | PERSSON B, KALLBERG Y. Classification and nomenclature of the superfamily of short-chain dehydrogenases/reductases (SDRs)[J]. Chemico-Biological Interactions, 2013, 202(1/2/3): 111-115. |
20 | MAETINS B M, MACEDO-RIBERIRO S, BRESSER J, et al. Structural basis for stereo-specific catalysis in NAD+-dependent (R)-2-hydroxyl glutarate dehydrogenase from Acidaminococcus fermentans[J]. The FEBS Journal, 2005, 272: 269-281. |
21 | LESK A M. NAD-binding domains of dehydrogenases[J]. Current Opinion in Structural Biology, 1995, 5(6): 775-83. |
22 | FILLING C, BERNDT K D, BENACH J, et al. Critical residues for structure and catalysis in short-chain dehydrogenases/reductases[J]. Journal of Biological Chemistry, 2002, 277(28): 25677. |
23 | KOUMANOV A, BENACH J, ATRIAN S, et al. The catalytic mechanism of Drosophila alcohol dehydrogenase: evidence for a proton relay modulated by the coupled ionization of the active site Lysine/Tyrosine pair and a NAD+ ribose OH switch[J]. Proteins-Structure Function & Bioinformatics, 2010, 51(2): 289-298. |
24 | OPPERMANU U C T, FILLING C, BERNDT K D, et al. Active site directed mutagenesis of 3β/17β-hydroxysteroid dehydrogenase establishes differential effects on short-chain dehydrogenase/reductase reactions[J]. Biochemistry, 1997, 36(1): 34-40. |
25 | JÖRNVALL H, HEDLUND J, BERGMAN T, et al. Origin and evolution of medium chain alcohol dehydrogenases[J]. Chemico-Biological Interactions, 2013, 202(1/2/3): 91-96. |
26 | TANEJA B, MANDE S C. Conserved structural features and sequence patterns in the GroES fold family[J]. Protein Engineering, 1999, 12: 815-818. |
27 | MAN H, GARGIULO S, FRANK A, et al. Structure of the NADH-dependent thermostable alcohol dehydrogenase TADH from Thermus sp. ATN1 provides a platform for engineering specificity and improved compatibility with inorganic cofactor-regeneration catalysts[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 105: 1-6. |
28 | MAN H, LODERER C, MARION B, et al. Structure of NADH‐dependent carbonyl reductase (CPCR2) from Candida parapsilosis provides insight into mutations that improve catalytic properties[J]. ChemCatChem, 2014, 6(4): 1103-1111. |
29 | HEDLUND J, JÖRNVALL H, PERSSON B. Subdivision of the MDR superfamily of medium chain dehydrogenases/reductases through iterative hidden Markov model refinement[J]. BMC Bioinformatics, 2010, 11: 534. |
30 | JÖRNVALL H, HEDLUND J, BERGMAN T, et al. Superfamilies SDR and MDR: from early ancestry to present forms. emergence of three lines, a Zn-metalloenzyme, and distinct variabilities[J]. Biochemical & Biophysical Research Communications, 2010, 396(1): 125-130. |
31 | HYNDMAN D, BAUMAN D R, HEREDIA V V, et al. The aldo-keto reductase superfamily homepage[J]. Chemico-Biological Interactions, 2003, 143/144: 621-631. |
32 | LAPTHORN A J, ZHU X F, ELLIS E M. The diversity of microbial aldo/keto reductases from Escherichia coli K12[J]. Chemico-Biological Interactions, 2013, 202: 168-177. |
33 | JEZ J M, BENNETT M J, SCHLEGEL B P, et al. Comparative anatomy of the aldo-keto reductase superfamily[J]. Biochemical Journal, 1997, 326(3): 625-636. |
34 | MINDINICH R D, PENNING T M. Aldo-keto reductase (AKR) superfamily: genomics and annotation[J]. Human Genomics, 2009, 3(1): 362-370. |
35 | PENNING T M, DRURY J E. Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms[J]. Archives of Biochemistry & Biophysics, 2007, 464(2): 241-250. |
36 | NI Y, LI C X, MA H M, et al. Biocatalytic properties of a recombinant aldo-keto reductase with broad substrate spectrum and excellent stereoselectivity[J]. Applied Microbiology and Biotechnology, 2011, 89(4): 1111-1118. |
37 | NING C X, SU E Z, WEI D Z. Characterization and identification of three novel aldo-keto reductases from Lodderomyces elongisporus for reducing ethyl 4-chloroacetoacetate[J]. Archives of Biochemistry & Biophysics, 2014, 564: 219-228. |
38 | GUO R Y, NIE Y, MU X Q, et al. Genomic mining-based identification of novel stereospecific aldo-keto reductases toolbox from Candida parapsilosis for highly enantioselective reduction of carbonyl compounds[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 105: 66-73. |
39 | XU Y P, GUAN Y H, YU H L, et al. Improved o-chlorobenzoylformate bioreduction by stabilizing aldo-keto reductase YtbE with additives[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 104: 108-114. |
40 | ELLIS E M. Microbial aldo-keto reductases[J]. FEMS Microbiology Letters, 2002, 216: 123-131. |
41 | RUIZ F X, COUSIDO-SIAH A, MITSCHLER A, et al. X-ray structure of the V301L aldo-keto reductase 1B10 complexed with NADP+ and the potent aldose reductase inhibitor fidarestat: implications for inhibitor binding and selectivity[J]. Chemico-biological Interactions, 2013, 202(1-3): 178-185. |
42 | YAMAMOTO K, HIGASHIURA A, SUZUKI M, et al. Identification, characterization, and crystal structure of an aldo-keto reductase (AKR2E4) from the silkworm Bombyx mori [J]. Biochemical & Biophysical Research Communications, 2013, 538(1): 156-163. |
43 | COSTANZO L D, PENNING T M, CHRISTIANSON D W. Aldo-keto reductases in which the conserved catalytic histidine is substituted[J]. Chemico-Biological Interactions, 2009, 178(1/2/3): 127-133. |
44 | LIU X, WANG C, ZHANG L J, et al. Structural and mutational studies on an aldo-keto reductase AKR5C3 from Gluconobacter oxydans[J]. Protein Society, 2014, 23: 1540-1549. |
45 | HONG S H, NAM H K, KIM K R, et al. Molecular characterization of an aldo-keto reductase from Marivirga tractuosa that converts retinal to retinol[J]. Journal of Biotechnology, 2014, 169: 23-33. |
46 | QUINTARD A, ALEXAKIS A. Stereoselective synthesis of drugs and natural products[M]. New York: Wiley, 2013. |
47 | WEI P, GUO Z, WU X, et al. Significantly enhancing the biocatalytic synthesis of chiral alcohols by semi-rationally engineering an anti-Prelog carbonyl reductase from Acetobacter sp. CCTCC M209061[J]. Molecular Catalysis, 2019, 479: 110613. |
48 | GONG X M, QIN Z, LI F L, et al. Development of an engineered ketoreductase with simultaneously improved thermostability and activity for making a bulky atorvastatin precursor[J]. ACS Catalysis, 2019, 9(1): 147-153. |
49 | HONDA K, INOUE M, ONO T, et al. Improvement of operational stability of Ogataea minuta carbonyl reductase for chiral alcohol production[J]. Journal of Bioscience and Bioengineering, 2017, 123(6): 673-678. |
50 | QIN F, QIN B, ZHANG W, et al. Discovery of a switch between Prelog and anti-Prelog reduction toward halogen-substituted acetophenones in short-chain dehydrogenase/reductases[J]. ACS Catalysis, 2018, 8(7): 6012-6020. |
51 | ZHANG W, ZHU T, LI H, et al. Key sites insight on the stereoselectivity of four mined aldo-keto reductases toward α-keto esters and halogen-substituted acetophenones[J]. Applied Microbiology and Biotechnology, 2019, 103(15): 6119-6128. |
52 | WU H, TIAN C Y, SONG X K, et al. Methods for the regeneration of nicotinamide coenzymes[J]. Green Chemistry, 2013, 15: 1773-1789. |
53 | KARA S, SCHRITTWIESER J H, HOLLMANNF, et al. Recent trends and novel concepts in cofactor-dependent biotransformations[J]. Applied Microbiology and Biotechnology, 2014, 98: 1517-1529. |
54 | RODRIGUEZ C, LAVANDERA I, GOTOR V. Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes[J]. Current Organic Chemistry, 2012, 16: 2525-2541. |
55 | WECKBECKER A, GROGER H, HUMMEL W. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds[J]. Advances in Biochemical Engineering/Biotechnology, 2010, 120: 195-242. |
56 | LIU Z Q, YE J J, YANG Z, et al. Upscale production of ethyl (S)-4-chloro-3-hydroxybutanoate by using carbonyl reductase coupled with glucose dehydrogenase in aqueous-organic solvent system[J]. Applied Microbiology & Biotechnology, 2015, 99(5): 239-2129. |
57 | ZHANG X J, WANG W Z, ZHOU R, et al. Asymmetric synthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using a self-sufficient biocatalyst based on carbonyl reductase and cofactor co-immobilization[J]. Bioprocess and Biosystems Engineering, 2020, 43(1): 21-31. |
58 | KALIAPERUMAL T, GUMMADI S N, CHADHA A. Synthesis of both enantiomers of ethyl-4-chloro-3-hydroxbutanoate from a prochiral ketone using Candida parapsilosis ATCC 7330[J]. Tetrahedron Asymmetry, 2011, 22(14/15): 1548-1552. |
59 | PATEL R N, MCNAMEE C G, BANERJEE A, et al. Stereoselective reduction of β-keto esters by Geotrichum candidum[J]. Enzyme & Microbial Technology, 1992, 14(9): 731-738. |
60 | YE Q, OUYANG P, YING H. A review-biosynthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate ester: recent advances and future perspectives[J]. Applied Microbiology & Biotechnology, 2011, 89(3): 513-522. |
61 | YOU Z Y, LIU Z Q, ZHENG Y G. Characterization of a newly synthesized carbonyl reductase and construction of a biocatalytic process for the synthesis of ethyl (S)-4-chloro-3-hydroxybutanoate with high space-time yield[J]. Applied Microbiology & Biotechnology, 2014, 98(4): 1671-1680. |
62 | CAI P, AN M, XU L, et al. Development of a substrate-coupled biocatalytic process driven by an NADPH-dependent sorbose reductase from Candida albicans for the asymmetric reduction of ethyl4-chloro-3-oxobutanoate[J]. Biotechnology Letters, 2012, 34(12): 2223-2227. |
63 | LUO W, DU H J, BONKU E M, et al. An alkali-tolerant carbonyl reductase from Bacillus subtilis by gene mining: identification and application[J]. Catalysis Letters, 2019, 149(11): 2973-2983. |
64 | YANG Z Y, YE W T, XIE Y, et al. Efficient asymmetric synthesis of ethyl (S)-4-Chloro-3-hydroxybutyrate using alcohol dehydrogenase SmADH31 with high tolerance of substrate and product in a monophasic aqueous system[J]. Organic Process Research & Development, 2020, 24(6): 1068-1076. |
65 | LUO X, WANG Y J, SHEN W, et al. Activity improvement of a Kluyveromyces lactis aldo-keto reductase KlAKR via rational design[J]. Journal of Biotechnology, 2016, 224: 20-26. |
66 | WANG Y J, YING B B, SHEN W, et al. Rational design of Kluyveromyces marxianus ZJB14056 aldo-keto reductase KmAKR to enhance diastereoselectivity and activity[J]. Enzyme & Microbial Technology, 2017, 107: 32-40. |
67 | YU H, QIU S, CHENG F, et al. Improving the catalytic efficiency of aldo-keto reductase KmAKR towards t-butyl 6-cyano-(3R,5R)-dihydroxyhexanoate via semi-rational design[J]. Bioorganic Chemistry, 2019, 90: 103018. |
68 | QIU S, CHENG F, JIN L J, et al. Co-evolution of activity and thermostability of an aldo-keto reductase KmAKR for asymmetric synthesis of statin precursor dichiral diols[J]. Bioorganic Chemistry, 2020, 103: 104228. |
69 | WU X, WANG L, WANG S, et al. Stereoselective introduction of two chiral centers by a single diketoreductase: an efficient biocatalytic route for the synthesis of statin side chains[J]. Amino Acids, 2010, 39(1): 305-308. |
70 | WU X, CHEN C, LIU N, et al. Preparation of ethyl 3R,5S-6-(benzyloxy)-3,5-dihydroxy-hexanoate by recombinant diketoreductase in a biphasic system[J]. Bioresource Technology, 2011, 102(3): 3649-3652. |
71 | WU X, JIANG J, CHEN Y. Correlation between intracellular cofactor concentrations and biocatalytic efficiency: coexpression of diketoreductase and glucose dehydrogenase for the preparation of chiral diol for statin drugs[J]. ACS Catalysis, 2014, 1(12): 1661-1664. |
72 | HE X, CHEN S, WU J, et al. Highly efficient enzymatic synthesis of tert-butyl (S)-6-chloro-5-hydroxy-3-oxohexanoate with a mutant alcohol dehydrogenase of Lactobacillus kefir[J]. Applied Microbiology and Biotechnology, 2015, 99(21): 8963-8975. |
73 | LIU Z Q, WU L, ZHANG X J, et al. Directed evolution of carbonyl reductase from Rhodosporidium toruloides and its application in stereoselective synthesis of tert-butyl (3R,5S)-6-Chloro-3,5-dihydroxyhexanoate[J]. Journal of Agricultural & Food Chemistry, 2017, 65(18): 3721. |
74 | LIU Z Q, WU L, ZHENG L, et al. Biosynthesis of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate by carbonyl reductase from Rhodosporidium toruloides in mono and biphasic media[J]. Bioresource Technology, 2017, 249: 161. |
75 | ZHANG X J, ZHENG L, WU D, et al. Production of tert-butyl (3R,5S)-6-chloro-3,5-dihydroxyhexanoate using carbonyl reductase coupled with glucose dehydrogenase with high space-time yield[J]. Biotechnology Progress, 2020, 36 (1): 21672190. |
76 | 吴结丰, 徐利敏. β-内酰胺的研究进展[J]. 甘肃石油和化工, 2007, 21(3): 23-27. |
WU Jiefeng, XU Limin. Research progress of β-lactam[J]. Gansu Petroleum and Chemical Industry, 2007, 21(3): 23-27. | |
77 | LIU Z Q, DONG S C, YIN H H, et al. Enzymatic synthesis of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase in an aqueous-organic solvent system[J]. Bioresource Technology, 2017, 229: 26-32. |
78 | ZHANG X J, ZHOU R, WU D, et al. Efficient production of an ezetimibe intermediate using carbonyl reductase coupled with glucose dehydrogenase[J]. Biotechnology Progress, 2020, DOI:org/10.1002/btpr.3068. |
79 | MATSUYAMA A, YAMAMOTO H, KAWADA N, et al. Industrial production of (R)-1,3-butanediol by new biocatalysts[J]. Journal of Molecular Catalysis B: Enzymatic, 2001, 11(4/5/6): 513-521. |
80 | YAMAMOTO H, MATSUYAMA A, KOBAYASHI Y. Synthesis of 1,3-butanediol by enantioselective oxidation using whole recombinant cells expressing-specific secondary alcohol dehydrogenase[J]. Bioence Biotechnology and Biochemistry, 2014, 66(4): 925-927. |
81 | ZHENG R C, GE Z, QIU Z K, et al. Asymmetric synthesis of (R)-1,3-butanediol from 4-hydroxy-2-butanone by a newly isolated strain Candida krusei ZJB-09162[J]. Applied Microbiology & Biotechnology, 2012, 94(4): 969-976. |
82 | NOYORI R, IKEDA T, OHKUMA T, et al. Stereoselective hydrogenation via dynamic kinetic resolution[J]. Journal of the American Chemical Society, 1989, 111(25): 8291-8327. |
83 | SHIMODA K, KUBOTA N, HAMADA H, et al. Production of (2R,3S)-2-benzamidomethyl-3-hydroxybutanoates by immobilized plant cells of Parthenocissus tricuspidata[R]. Biochemistry Insights, 2009. Doi. 10.4137/BCI.S961. |
84 | GANDOLFI R, CESAROTTI E, MOLINARI F, et al. Asymmetric reductions of ethyl 2-(benzamidomethyl)-3-oxobutanoate by yeasts[J]. Tetrahedron Asymmetry, 2009, 20(4): 43-414. |
85 | RIMOLDI I, CESAROTTI E, ZERLA D, et al. 3-(Hydroxy(phenyl) methyl) azetidin-2-ones obtained via catalytic asymmetric hydrogenation or by biotransformation[J]. Tetrahedron Asymmetry, 2011, 22(5): 597-602. |
86 | YASOHARA Y, YANO M, KAWANO S, et al. Method for producing optically active2-(substituted aminomethyl)-3-hydroxybutyric acid ester: US2009104671[P]. 2008-04-09. |
87 | VOLKMANN R A, KELBAUGH P R, NASON D M, et al. 2-Thioalkyl penems: an efficient synthesis of sulopenem, a (5R,6S)-6-(1(R)-hydroxyethyl)-2-[(cis-1-oxo-3-thiolanyl) thio]-2-penem antibacterial[J]. Journal of Organic Chemistry, 1992, 57(16): 4352-4361. |
88 | LIANG J, MUNDORFF E, VOLADRI R, et al. Highly enantioselective reduction of a small heterocyclic ketone: biocatalytic reduction of tetrahydrothiophene-3-one to the corresponding (R)-alcohol[J]. Organic Process Research & Development, 2010, 14(1): 188-192. |
89 | WHEELER W J, KUO F. An asymmetric synthesis of duloxetine hydrochloride, a mixed uptake inhibitor of serotonin and norepinephrine, and ITS C-14 labeled isotopomers[J]. Journal of Labelled Compounds and Radiopharmaceuticals, 1995, 36(3): 213-223. |
90 | SONI P, KANSAL H, BANERJEE U C. Optimization of process parameters for the production of carbonyl reductase by Candida viswanathii in a laboratory-scale fermentor[J]. Journal of Industrial Microbiology & Biotechnology, 2008, 35(3): 167-173. |
91 | SAVILE C, GRUBER J M, MUNDORFF E, et al. Ketoreductase polypeptides for the production of a3-aryl-3-hydroxypropanamine from a 3-aryl-3-ketopropanamine: US8673607[P]. 2014-03-18. |
92 | WANG Y J, LIU X Q, LUO X, et al. Cloning, expression and enzymatic characterization of an aldo-keto reductase from Candida albicans XP1463[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 122: 44-50. |
93 | CURET O, DAMOISEAU G, AUBIN N, et al. Befloxatone, a new reversible and selective monoamine oxidase-A inhibitor[J]. Journal of Pharmacology and Experimental Therapeutics, 1996, 277: 253-264. |
[1] | LI Huahua, LI Yihang, JIN Beichen, LI Longxin, CHENG Shao’an. Research progress of Anammox bio-electrochemical coupling wastewater treatment system [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2678-2690. |
[2] | YUE Xin, LI Chunying, SUN Dao’an, LI Jiangwei, DU Yongmei, MA Hui, LYU Jian. Progress on heterogeneous catalysts for cyclopropanation of diazo compounds [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2390-2401. |
[3] | MENG Lingding, MAO Menglei, LIAO Qiyong, MENG Zihui, LIU Wenfang. Recent advance in stability of carbonic anhydrase and formate dehydrogenase [J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. |
[4] | GAO Bo, FENG Xudong, LI Chun. Visual and high-throughput method for detecting the activity of aspartate transcarbamylase [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2054-2059. |
[5] | ZHANG Yan, WANG Wei, XIE Rui, JU Xiaojie, LIU Zhuang, CHU Liangyin. Controllable fabrication of polymeric microparticles loaded with enzyme@ZIF-8 [J]. Chemical Industry and Engineering Progress, 2022, 41(4): 2022-2028. |
[6] | LI Qingyuan, WANG Chao, XU Shipei, ZHANG Xueqin, QIU Mingjian, LIU Mengyao, CONG Mengxiao. Research progress on reaction process and catalysts for PBS precursor of 1,4-butanediol synthesis [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5771-5782. |
[7] | LU Zeping, PEI Xinhua, XUE Yu, ZHANG Xiaoguang, HU Yi. Chemical modification of porcine pancreatic lipase with betaine ionic liquid to improve its enzymatic properties [J]. Chemical Industry and Engineering Progress, 2022, 41(11): 6045-6052. |
[8] | LI Qing, LIU Wujun, GUO Xiaojia, WANG Qian, ZHAO Zongbao. Chiral NAD analogs as cofactors for biocatalysis [J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5214-5221. |
[9] | JU Shuyun, WU Jianping, YANG Lirong. Advances in the molecular modification and application of D-amino acid oxidase [J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1215-1225. |
[10] | Zhufan LIN, Shao’an CHENG, Zhengzhong MAO, Ruonan GU, Jiawei YANG. Recent advances in the construction and influencing factors of bio-electrochemical nitrogen removal systems [J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3766-3776. |
[11] | Cheng ZHU,Guochao XU,Wei DAI,Jieyu ZHOU,Ye NI. Effect of position 127 on the activity and enantioselectivity of alcohol dehydrogenase KpADH [J]. Chemical Industry and Engineering Progress, 2019, 38(12): 5504-5511. |
[12] | Tian JIANG, Xudong FENG, Yan LI, Chu LI. The biocatalysis and enzyme modification of substrate specificity [J]. Chemical Industry and Engineering Progress, 2019, 38(01): 606-614. |
[13] | YU Bo, LIU Chao, LIU Jindong, DING Wanyu, CHAI Weiping. Preparation of mesoporous zirconium phosphate and its catalytic performace in the preparation of cellulose from glucose [J]. Chemical Industry and Engineering Progress, 2018, 37(06): 2236-2241. |
[14] | YAN Xingchen, ZHAO Qianru, WANG Kaifeng, GUO Yuxin, JIANG Ling, HUANG He. Auto-induced expression of trehalose synthetase and novel process for catalytic production of trehalose [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1949-1955. |
[15] | WANG Rui, XU Yaohui, WANG Kewei, WU Minchen. Expression of PvEH3,a Phaseolus vulgaris epoxide hydrolase,and synthesis of chiral vicinal diols [J]. Chemical Industry and Engineering Progress, 2018, 37(05): 1933-1939. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |