Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (4): 2258-2269.DOI: 10.16085/j.issn.1000-6613.2020-0709
• Biochemical and pharmaceutical engineering • Previous Articles Next Articles
LIANG Yi1(), NI Hui1,2,3, JIANG Zedong1,2,3, ZHU Yanbing1,2,3, LI Qingbiao1,2,3()
Received:
2020-04-29
Online:
2021-04-14
Published:
2021-04-05
Contact:
LI Qingbiao
梁懿1(), 倪辉1,2,3, 姜泽东1,2,3, 朱艳冰1,2,3, 李清彪1,2,3()
通讯作者:
李清彪
作者简介:
梁懿(1997—),女,硕士研究生,研究方向为食品加工与安全。E-mail:基金资助:
CLC Number:
LIANG Yi, NI Hui, JIANG Zedong, ZHU Yanbing, LI Qingbiao. Countercurrent cleaning technology of residual alkali in Gracilaria agar production[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2258-2269.
梁懿, 倪辉, 姜泽东, 朱艳冰, 李清彪. 江蓠琼脂生产中清洗残碱的逆流工艺[J]. 化工进展, 2021, 40(4): 2258-2269.
Add to citation manager EndNote|Ris|BibTeX
URL: https://hgjz.cip.com.cn/EN/10.16085/j.issn.1000-6613.2020-0709
质量指标 | R2 | RMSE |
---|---|---|
透明度 | 0.972 | 1.894 |
凝胶强度 | 0.895 | 13.003 |
凝固温度 | 0.954 | 0.283 |
溶化温度 | 0.977 | 0.383 |
硫酸基 | 0.922 | 0.685 |
3,6-内醚半乳糖 | 0.947 | 0.279 |
质量指标 | R2 | RMSE |
---|---|---|
透明度 | 0.972 | 1.894 |
凝胶强度 | 0.895 | 13.003 |
凝固温度 | 0.954 | 0.283 |
溶化温度 | 0.977 | 0.383 |
硫酸基 | 0.922 | 0.685 |
3,6-内醚半乳糖 | 0.947 | 0.279 |
液料比 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
16.7∶1(模型拟合) | 90.1 | 943 | 39.7 | 96.1 | 1.5 | 26.3 |
13.2∶1(模型拟合) | 85.6 | 934 | 39.2 | 95.4 | 2.0 | 25.7 |
15.5∶1(模型拟合) | 88.9 | 942 | 39.5 | 96.0 | 1.7 | 26.1 |
14.5∶1(模型拟合) | 87.7 | 939 | 39.4 | 95.8 | 1.8 | 26.0 |
16.5∶1(模型拟合) | 89.9 | 943 | 39.6 | 96.1 | 1.6 | 26.2 |
18.1∶1(模型拟合) | 90.9 | 942 | 39.6 | 96.1 | 1.5 | 26.4 |
20∶1(企业参数) | 90.1 | 936 | 39.5 | 95.8 | 1.4 | 26.4 |
18.1∶1(验证试验) | 86.3 | 945 | 39.8 | 95.7 | 0.9 | 27.3 |
液料比 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
16.7∶1(模型拟合) | 90.1 | 943 | 39.7 | 96.1 | 1.5 | 26.3 |
13.2∶1(模型拟合) | 85.6 | 934 | 39.2 | 95.4 | 2.0 | 25.7 |
15.5∶1(模型拟合) | 88.9 | 942 | 39.5 | 96.0 | 1.7 | 26.1 |
14.5∶1(模型拟合) | 87.7 | 939 | 39.4 | 95.8 | 1.8 | 26.0 |
16.5∶1(模型拟合) | 89.9 | 943 | 39.6 | 96.1 | 1.6 | 26.2 |
18.1∶1(模型拟合) | 90.9 | 942 | 39.6 | 96.1 | 1.5 | 26.4 |
20∶1(企业参数) | 90.1 | 936 | 39.5 | 95.8 | 1.4 | 26.4 |
18.1∶1(验证试验) | 86.3 | 945 | 39.8 | 95.7 | 0.9 | 27.3 |
样品 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
无逆流 | 91.7±0.6a | 937±5a | 39.3±0.4a | 96.0±0.1a | 1.5±0.0c | 26.5±0.1a |
第二次清洗废水单次单级逆流 | 90.1±0.5b | 923±7a | 39.1±0.8a | 96.1±0.1a | 1.5±0.1b | 27.0±0.8a |
第三次清洗废水单次单级逆流 | 90.8±0.2ab | 886±7b | 37.8±0.6ab | 96.0±0.0a | 1.5±0.1c | 26.4±0.5a |
第四次清洗废水单次单级逆流 | 90.9±0.6ab | 859±7b | 37.2±1.6b | 96.0±0.0a | 1.6±0.0a | 25.5±0.6a |
样品 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
无逆流 | 91.7±0.6a | 937±5a | 39.3±0.4a | 96.0±0.1a | 1.5±0.0c | 26.5±0.1a |
第二次清洗废水单次单级逆流 | 90.1±0.5b | 923±7a | 39.1±0.8a | 96.1±0.1a | 1.5±0.1b | 27.0±0.8a |
第三次清洗废水单次单级逆流 | 90.8±0.2ab | 886±7b | 37.8±0.6ab | 96.0±0.0a | 1.5±0.1c | 26.4±0.5a |
第四次清洗废水单次单级逆流 | 90.9±0.6ab | 859±7b | 37.2±1.6b | 96.0±0.0a | 1.6±0.0a | 25.5±0.6a |
样品 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
全程无逆流 | 91.7±0.6a | 937±5a | 39.3±0.4a | 96.0±0.1a | 1.5±0.0c | 26.5±0.1a |
全程一级逆流 | 87.8±0.1c | 889±7b | 36.0±0.6c | 95.8±0.0a | 1.8±0.0b | 25.4±1.0a |
全程二级逆流 | 88.5±0.4bc | 866±7c | 38.1±1.2ab | 95.5±0.5a | 1.9±0.0a | 25.4±0.5a |
全程三级逆流 | 89.0±0.5b | 843±3d | 37.3±1.2bc | 94.2±0.8b | 1.8±0.1b | 24.8±0.4b |
样品 | 透明度 /% | 凝胶强度 /g·cm-2 | 凝固温度 /℃ | 溶化温度 /℃ | 硫酸基含量 /% | 3,6-内醚半乳糖含量 /% |
---|---|---|---|---|---|---|
全程无逆流 | 91.7±0.6a | 937±5a | 39.3±0.4a | 96.0±0.1a | 1.5±0.0c | 26.5±0.1a |
全程一级逆流 | 87.8±0.1c | 889±7b | 36.0±0.6c | 95.8±0.0a | 1.8±0.0b | 25.4±1.0a |
全程二级逆流 | 88.5±0.4bc | 866±7c | 38.1±1.2ab | 95.5±0.5a | 1.9±0.0a | 25.4±0.5a |
全程三级逆流 | 89.0±0.5b | 843±3d | 37.3±1.2bc | 94.2±0.8b | 1.8±0.1b | 24.8±0.4b |
项目 | 第一次清洗残碱用水量 /mL | 第二次清洗残碱用水量 /mL | 第三次清洗残碱用水量 /mL | 第四次清洗残碱用水量 /mL | 生产1t琼脂清洗残碱 耗水量/t | 相对传统工艺节水量 /t | 相对传统工艺节水率 /% |
---|---|---|---|---|---|---|---|
传统工艺 | 2000 | 2000 | 2000 | 2000 | 727 | — | — |
本研究优化液料比、全程无逆流 | 1810 | 1810 | 1810 | 1810 | 658 | 69 | 9.49 |
本研究优化液料比、单次单级逆流 | 0 | 1810 | 1810 | 1810 | 494 | 233 | 32.1 |
本研究优化液料比、全程一级逆流 | 905 | 905 | 905 | 1810 | 411 | 316 | 43.4 |
本研究优化液料比、全程三级逆流 | 0 | 0 | 0 | 1810 | 165 | 562 | 77.4 |
项目 | 第一次清洗残碱用水量 /mL | 第二次清洗残碱用水量 /mL | 第三次清洗残碱用水量 /mL | 第四次清洗残碱用水量 /mL | 生产1t琼脂清洗残碱 耗水量/t | 相对传统工艺节水量 /t | 相对传统工艺节水率 /% |
---|---|---|---|---|---|---|---|
传统工艺 | 2000 | 2000 | 2000 | 2000 | 727 | — | — |
本研究优化液料比、全程无逆流 | 1810 | 1810 | 1810 | 1810 | 658 | 69 | 9.49 |
本研究优化液料比、单次单级逆流 | 0 | 1810 | 1810 | 1810 | 494 | 233 | 32.1 |
本研究优化液料比、全程一级逆流 | 905 | 905 | 905 | 1810 | 411 | 316 | 43.4 |
本研究优化液料比、全程三级逆流 | 0 | 0 | 0 | 1810 | 165 | 562 | 77.4 |
项目 | 生产1t琼脂逆流设备成本及运行费用 | 生产1t琼脂逆流工艺新增总费用/CNY | 生产1t琼脂 节约水费/CNY | 生产1t琼脂节约费用/CNY | |
---|---|---|---|---|---|
逆流设备成本/CNY | 逆流设备运行电费/CNY | ||||
传统工艺 | 0 | 0 | 0 | 0 | 0 |
本研究优化液料比、全程无逆流 | 0 | 0 | 0 | 172 | 172 |
本研究优化液料比、单次单级逆流 | 103 | 6.81 | 110 | 583 | 473 |
本研究优化液料比、全程一级逆流 | 103 | 10.2 | 113 | 790 | 677 |
本研究优化液料比、全程三级逆流 | 103 | 20.4 | 123 | 1405 | 1282 |
项目 | 生产1t琼脂逆流设备成本及运行费用 | 生产1t琼脂逆流工艺新增总费用/CNY | 生产1t琼脂 节约水费/CNY | 生产1t琼脂节约费用/CNY | |
---|---|---|---|---|---|
逆流设备成本/CNY | 逆流设备运行电费/CNY | ||||
传统工艺 | 0 | 0 | 0 | 0 | 0 |
本研究优化液料比、全程无逆流 | 0 | 0 | 0 | 172 | 172 |
本研究优化液料比、单次单级逆流 | 103 | 6.81 | 110 | 583 | 473 |
本研究优化液料比、全程一级逆流 | 103 | 10.2 | 113 | 790 | 677 |
本研究优化液料比、全程三级逆流 | 103 | 20.4 | 123 | 1405 | 1282 |
1 | ROCHA C M R, SOUSA A M M, KIM J K, et al. Characterization of agar from Gracilaria tikvahiae cultivated for nutrient bioextraction in open water farms[J]. Food Hydrocolloids, 2019, 89(4): 260-271. |
2 | 孙青民, 刘威, 姚红. 屎肠球菌产生有机酸降低琼脂胶凝作用[J]. 中国微生态学杂志, 2018, 30(11): 1252-1257. |
SUN Qingmin, LIU Wei, YAO Hong. Enterococcus faeciumreduces agar gelatination via generating organic acids[J]. Chinese Journal of Microecology, 2018, 30(11): 1252-1257. | |
3 | CHEONG K L, QIU H M, DU H, et al. Oligosaccharides derived from red seaweed: production, properties, and potential health and cosmetic applications[J]. Molecules, 2018, 23(10): 2451-2469. |
4 | 赵小亮, 王钰婷, 肖宁, 等. 海洋寡糖及其衍生物活性的研究进展[J]. 生物技术进展, 2018, 8(6): 477-488. |
ZHAO Xiaoliang, WANG Yuting, XIAO Ning, et al. Progress on activities of marine oligosaccharides and their derivatives[J]. Current Biotechnology, 2018, 8(6): 477-488. | |
5 | 赵谋明, 吴晖, 刘通讯, 等. 江蓠琼胶加工过程中碱处理及最佳工艺条件的研究[J]. 食品与发酵工业, 1996, 27(4): 33-37. |
ZHAO Mouming, WU Hui, LIU Tongxun, et al. Study on the effect of alkali-treament and optimum conditions during the processing of agar from Gracilaria[J]. Food and Fermentation Industries, 1996, 27(4): 33-37. | |
6 | SOUSA A M M, ALVES V D, MORAIS S, et al. Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: evaluation of a microwave-assisted process using response surface methodology[J]. Bioresource Technology, 2010, 101(9): 3258-3267. |
7 | OGRETMEN O Y, DUYAR H A. The effect of different extraction methods and pre-treatments on agar yield and physico-chemical properties of Gelidium latifolium (Gelidiaceae, Rhodophyta) from Sinop Peninsula Coast of Black Sea, Turkey[J]. Journal of Applied Phycology, 2017, 30(2): 1355-1360. |
8 | XIAO Q, WENG H F, NI H, et al. Physicochemical and gel properties of agar extracted by enzyme and enzyme-assisted methods[J]. Food Hydrocolloids, 2019, 87(2): 530-540. |
9 | CHEN H J, XIAO Q, WENG H F, et al. Extraction of sulfated agar from Gracilaria lemaneiformis using hydrogen peroxide-assisted enzymatic method[J]. Carbohydrate Polymers, 2020, 232(6): 115790. |
10 | 范炳基, 郭飞燕, 林小明, 等. 细基江蓠繁枝变种提取琼胶的研究——高温稀碱前处理[J]. 热带海洋, 1991, 10(4): 94-97. |
FAN Bingji, GUO Feiyan, LIN Xiaoming, et al. The study on extracting agar from Gracilariatenuistipitata var. liui —Low concentration alkali hot treatment method[J]. Journal of Tropical Oceanography, 1991, 10(4): 94-97. | |
11 | 李来好, 王道公, 陈培基, 等. 氢氧化钠对江蓠琼脂凝胶化的影响[J]. 中国水产, 1995, 38(5): 36-37. |
LI Laihao, WANG Daogong, CHEN Peiji, et al. Effect of sodium hydroxide on gelation of Gracilaria agar[J]. China Fisheries, 1995, 38(5): 36-37. | |
12 | 龙梦娴. 琼脂降解相关酶类及酶法制备新琼寡糖的研究[D]. 武汉: 华中农业大学, 2011. |
LONG Mengxian. Research on agar degradation enzymes and preparation of neoagarooligosaccharides by enzymatic hydrolysis[D]. Wuhan: Huazhong Agricultural University, 2011. | |
13 | 蔡鹰, 李思东, 黄家康, 等. 海水替代淡水在江蓠加工中的应用研究[J]. 广东化工, 2009, 36(11): 115-116. |
CAI Ying, LI Sidong, HUANG Jiakang, et al. Study of graria processing to use sea water to replace fresh water[J]. Guangdong Chemical Industry, 2009, 36(11): 115-116. | |
14 | 张琦, 刘波, 张学金, 等. 膜分离技术在特种纸废水处理中的应用[J]. 水处理技术, 2017, 43(4): 135-138. |
ZHANG Qi, LIU Bo, ZHANG Xuejin, et al. Application research on treatment of special papermaking wastewater with membrane separation technology[J]. Technology of Water Treatment, 2017, 43(4): 135-138. | |
15 | ZHANG P, OUYANG S D, LI P, et al. Ultrahigh removal performance of lead from wastewater by tricalcium aluminate via precipitation combining flocculation with amorphous aluminum[J]. Journal of Cleaner Production, 2020, 246(5): 118728. |
16 | FERREIRA M B, MUNOZ-MORALES M, SAEZ C, et al. Improving biotreatability of hazardous effluents combining ZVI, electrolysis and photolysis[J]. Science of the Total Environment, 2020, 713(16): 136647. |
17 | BESSA L C B A, FERREIRA M C, RODRIGUES C E C, et al. Simulation and process design of continuous countercurrent ethanolic extraction of rice bran oil[J]. Journal of Food Engineering, 2017, 202(11): 99-113. |
18 | 陈红硕, 刘阳生. 逆流萃取+臭氧氧化联合工艺处理油基岩屑的效果[J]. 环境工程学报, 2020, 14(1): 209-216. |
CHEN Hongshuo, LIU Yangsheng. Effect of countercurrent extracting+ozone oxidation combined process treating oil-based cuttings[J]. Chinese Journal of Environmental Engineering, 2020, 14(1): 209-216. | |
19 | 杨贤庆, 赵永强, 戚勃, 等. 离子色谱法与硫酸钡比浊法测定琼胶糖中硫酸基含量的比较研究[J]. 食品科学, 2009, 30(18): 340-343. |
YANG Xianqing, ZHAO Yongqiang, QI Bo, et al. Comparison of ion chromatographic and barium sulfate turbidimetric determination of sulfate group in agarose[J]. Food Science, 2009, 30(18): 340-343. | |
20 | 史升耀, 张燕霞, 刘万庆, 等. 江蓠琼胶产率、物理性质和化学组成的季节变化[J]. 海洋与湖沼, 1983, 27(3): 272-278. |
SHI Shengyao, ZHANG Yanxia, LIU Wanqing, et al. The seasonal variation in yield, physical properties and chemical composition of agar from Gracilariaverrucosa[J]. Oceanologia et Limnologia Sinica, 1983, 27(3): 272-278. | |
21 | 李龙, 苏永昌, 刘淑集, 等. 琼脂及琼脂糖中3,6-内醚半乳糖的测定[J]. 渔业研究, 2012, 34(5): 370-374. |
LI Long, SU Yongchang, LIU Shuji, et al. Determination of 3,6-anhydro galactose in agar and agarose[J]. Journal of Fisheries Research, 2012, 34(5): 370-374. | |
22 | KUMAR V, FOTEDAR R. Agar extraction process for Gracilaria cliftonii (Withell, Millar, & Kraft, 1994)[J]. Carbohydrate Polymers, 2009, 78(4): 813-819. |
23 | YOUSEFI M K, ISLAMI H R, FILIZADEH Y. Effect of extraction process on agar properties of Gracilaria corticata (Rhodophyta) collected from the Persian Gulf[J]. Phycologia, 2019, 52(6): 481-487. |
24 | 赵谋明. 江蓠琼胶加工中碱处理的作用及机理[J]. 食品科学, 1991,12(11): 14-17. |
ZHAO Mouming. Effect and mechanism of alkali treatment in Gracilaria agar processing[J]. Food Science, 1991,12(11): 14-17. | |
25 | ARVIZU-HIGUERA D L, RODRIGUEZ-MONTESINOS Y E, MURILLO-ALVAREZ J I, et al. Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla[J]. Journal of Applied Phycology, 2007, 20(5): 515-519. |
26 | LI H Y, HUANG J Y, XIN Y J, et al. Optimization and scale-up of a new photobleaching agar extraction process from Gracilaria lemaneiformis[J]. Journal of Applied Phycology, 2008, 21(2): 247-254. |
27 | 许崇华, 崔珺, 黄兴召, 等. 基于线性混合效应模型的杉木树高-胸径模型[J]. 西北农林科技大学学报(自然科学版), 2017, 45(6): 53-60. |
XU Chonghua, CUI Jun, HUANG Xingzhao, et al. Height-diameter model for Chinese fir based on linear mixed model[J]. Journal of Northwest A&F University(Natural Science Edition), 2017, 45(6): 53-60. | |
28 | 朱运恒, 姜泽东, 倪辉, 等. 高透明度琼脂的制备工艺研究[J]. 食品工业科技, 2019, 40(21): 149-153. |
ZHU Yunheng, JIANG Zedong, NI Hui, et al. Study on the peparation of high tansparent agar[J]. Science and Technology of Food Industry, 2019, 40(21): 149-153. |
[1] | XU Chenyang, DU Jian, ZHANG Lei. Chemical reaction evaluation based on graph network [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 205-212. |
[2] | XU Chunshu, YAO Qingda, LIANG Yongxian, ZHOU Hualong. Research progress on functionalization strategies of covalent organic frame materials and its adsorption properties for Hg(Ⅱ) and Cr(Ⅵ) [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 461-478. |
[3] | ZHANG Fan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Initializing distillation column simulation based on the improved constant heat transport model [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4550-4558. |
[4] | WANG Chen, BAI Haoliang, KANG Xue. Performance study of high power UV-LED heat dissipation and nano-TiO2 photocatalytic acid red 26 coupling system [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4905-4916. |
[5] | WU Zhenghao, ZHOU Tianhang, LAN Xingying, XU Chunming. AI-driven innovative design of chemicals in practice and perspective [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3910-3916. |
[6] | ZHANG Zhichen, ZHU Yunfeng, CHENG Weishu, MA Shoutao, JIANG Jie, SUN Bing, ZHOU Zichen, XU Wei. Research advances on runaway decomposition of high pressure polyethylene: Reaction mechanism, initiation system and model [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 3979-3989. |
[7] | ZHANG Zhen, LI Dan, CHEN Chen, WU Jinglan, YING Hanjie, QIAO Hao. Separation and purification of salivary acids with adsorption resin [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4153-4158. |
[8] | WANG Shuo, ZHANG Yaxin, ZHU Botao. Prediction of erosion life of coal water slurry pipeline based on grey prediction model [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3431-3442. |
[9] | CHEN Sen, YIN Pengyuan, YANG Zhenglu, MO Yiming, CUI Xili, SUO Xian, XING Huabin. Advances in the intelligent synthesis of functional solid materials [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3340-3348. |
[10] | ZHOU Lei, SUN Xiaoyan, TAO Shaohui, CHEN Yushi, XIANG Shuguang. Development and application of refinery short-cut column model [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2819-2827. |
[11] | ZHAO Yi, YANG Zhen, ZHANG Xinwei, WANG Gang, YANG Xuan. Molecular simulation of self-healing behavior of asphalt under different crack damage and healing temperature [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3147-3156. |
[12] | LU Shijian, ZHANG Yuanyuan, WU Wenhua, YANG Fei, LIU Ling, KANG Guojun, LI Qingfang, CHEN Hongfu, WANG Ning, WANG Feng, ZHANG Juanjuan. Health risk assessment of nitrosamine pollutant diffusion in a million ton CO2 capture project [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3209-3216. |
[13] | YANG Hongmei, GAO Tao, YU Tao, QU Chengtun, GAO Jiapeng. Treatment of refractory organics sulfonated phenolic resin with ferrate [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3302-3308. |
[14] | ZHAO Jingbin, WANG Yanfu, WANG Tao, MA Weikai, WANG Chen. Vulnerability assessment of storage tanks based on Monte Carlo simulation and dynamic event tree [J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2751-2759. |
[15] | LIU Guangping, LU Zhenneng, GONG Yulie. Dynamic response and disturbance optimization of high temperature heat pump steam systems [J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1719-1727. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |