1 | BAGGE-HANSEN M, BASTEA S, HAMMONS J A, et al. Detonation synthesis of carbon nano-onions via liquid carbon condensation [J]. Nature Communications, 2019, 10: 3819. | 2 | LI X J, QU Y D, XIE X H, et al. Preparation of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation method [J]. Materials Letters, 2006, 60(29): 3673–3677. | 3 | 姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展[J]. 力学进展, 2012, 42(2): 129-140. | 3 | JIANG Zonglin, TENG Honghui, LIU Yunfeng. Some research progress on gaseous detonation physics [J]. Advances In Mechanics, 2012, 42(2): 129-140. | 4 | 曲艳东, 孔祥清, 李晓杰, 等. 热处理对爆轰合成的纳米TiO2混晶的结构相变的影响[J]. 物理学报, 2014, 63(3):037301. | 4 | QU Yandong, KONG Xiangqing, LI Xiaojie, et al. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles [J]. Acta Physica Sinica, 2014, 63(3): 037301. | 5 | 曲艳东, 李晓杰, 刘元. 纳米氧化钛团聚结构的研究[J]. 高压物理学报, 2010, 24(6): 438-442. | 5 | QU Yandong, LI Xiaojie, LIU Yuan. Study on the agglomerate structures of TiO2 nanoparticles [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 438-442. | 6 | HENSEL R C, MOREIRA M, RIUL A, et al. Monitoring the dispersion and agglomeration of silver nanoparticles in polymer thin films using localized surface plasmons and ferrell plasmons [J]. Applied Physics Letters, 2020, 116(10):103105. | 7 | TANG C, LI X, TANG Y, et al. Agglomeration mechanism and restraint measures of SiO2 nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations [J]. Nanotechnology, 2020, 31(16):165702. | 8 | 李晓杰, 王旭光, 张勇, 等. 爆炸合成新材料中的几个关键问题[C]//王旭光. 爆炸合成新材料与高效、安全爆破关键技术科学和工程技术. 北京:冶金工业出版社, 2011. | 8 | LI Xiaojie, WANG Xuguang, ZHANG Yong, et al. Several key problems in explosive synthesis of new materials [C]//WANG Xuguang. Explosive synthetic new material and key technology of high efficiency and safety blasting science and engineering technology [M]. Beijing: Metallurgical Industry Press, 2011. | 9 | QU Y D, ZHANG W J, KONG X Q, et al. Theoretical investigation of calculating temperatures in the combining zone of Cu/Fe composite plate jointed by explosive welding [J]. Phys. Metals Metallogr., 2016, 117(3): 260–266. | 10 | KUZ'MIN E V, LYSAK V I, KUZ'MIN S V, et al. Effect of parameters of high-velocity collision on the structure and properties of joints upon explosive welding with simultaneous ultrasonication [J]. Phys. Metals Metallogr., 2019, 120(2): 197-203. | 11 | STEPAN S B, ALEXANDER N O, NAUMOV STEPAN P, et al. Novel synthesis and properties of hydrogen-free detonation nanodiamond [J]. Propell. Explos. Pyrot., 2015, 40(1):39-45. | 12 | KOMATSU T. Bulk synthesis and characterization of graphite-like B-C-N and B-C-N hetero diamond compounds [J]. J. Mater. Chem., 2004, 14(2): 221–227. | 13 | SIVKOV A A, NAIDEN E P, PAK A Y. Dynamic synthesis of ultradispersed crystalline phases of the C-N system[J]. J. Superhard Mater., 2009, 31(5): 300-305. | 14 | KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125GPa and 3000K [J]. Diam. Relat. Mater., 2013, 39(10): 1–7. | 15 | WANG Y G, LIU F S, LIU Q J, et al. Recover of C3N4 nanoparticles under high-pressure by shock wave loading [J]. Ceram. Int., 2018, 44(16): 19290-19294. | 16 | LANGENDERFER M J, FAHRENHOLTZ W G, CHERTOPALOV S, et al. Detonation synthesis of silicon carbide nanoparticles [J]. Ceram. Int., 2020, 46(5): 6951-6954. | 17 | 邵丙璜, 张晓堤. 爆炸合成纳米聚晶超硬材料及其制品的产业化前景[J]. 金刚石与磨料磨具工程, 2001(6):26-27. | 17 | SHAO Binghuang, ZHANG Xiaodi. Industrialization prospect of explosive synthesis of nano-polycrystalline superhard materials and its products [J]. Diamond and Abrasives Engineering, 2001(6):26-27. | 18 | TSVIGUNOV A N, FROLOVA L A, KHOTIN V G. Detonation synthesis of cuprite with a cubic face-centered lattice (a review) [J]. Glass & Ceramics, 2003, 60(9/10): 347-350. | 19 | 李晓杰. 氧化物粉末的爆轰合成方法: CN1569617 [P]. 2005-01-26. | 19 | LI Xiaojie. Detonation synthesis of oxide powder: CN1569617 [P]. 2005-01-26. | 20 | QU Y D, LI X J, LI R Y, et al. Preparation and characterization of the TiO2 ultrafine particles by detonation method [J]. Mater. Res. Bull., 2008, 43(1): 97-103. | 21 | LI R Y, LI X J, XIE X H. Explosive synthesis of ultrafine Al2O3 and effect of temperature of explosion [J]. Combust. Explos. Shock Waves, 2006, 42 (5): 607-610. | 22 | XIE X H, LI X J, YAN H H. Detonation synthesis of zinc oxide nanometer powders [J]. Mater. Lett., 2006, 60(25/26): 3149-3152. | 23 | 李晓杰, 杜云艳, 王小红, 等. 爆轰法制备球形纳米CeO2粉末[J].中国稀土学报, 2008, 26(2): 209-212. | 23 | LI Xiaojie, DU Yunyan, WANG Xiaohong, et al. Preparation of nanometer-sized ceria powders by detonation method [J]. Journal of the Chinese Rare Earth Society, 2008, 26(2): 209-212. | 24 | 郑敏, 王作山. 爆炸法合成纳米α-Fe2O3[J]. 硅酸盐学报, 2005, 33(8):14-17. | 24 | ZHENG Min, WANG Zuoshan. Synthesis of α-Fe2O3 nanopowder by explosive method [J]. Journal of the Chinese Ceramic Society, 2005, 33(8): 14-17. | 25 | QU Y D, LI X J, YAN H H, et al. Selective synthesis of TiO2 nanopowders [J]. Glass Phys. Chem., 2008, 34(5): 637–639. | 26 | 解一超. 爆轰法制备纳米二氧化铈及其性能研究[D].南京:南京理工大学, 2013. | 26 | XIE Yichao. Study on preparation and properties of nano-cerium dioxide by detonation [D].Nanjing: Nanjing University of Science and Technology, 2013. | 27 | 侯毅峰, 刘玉存, 王作山, 等. 爆炸法制备纳米氧化锆及其表征[J].含能材料, 2011, 19(1): 89–93. | 27 | HOU Yifeng, LIU Yucun, WANG Zuoshan, et al. Preparation and characterization of nanometer zirconia via explosive detonation technique[J]. Chinese Journal of Energetic Materials, 2011, 19(1): 89–93. | 28 | QU Y D, SUN C H, SUN G L, et al. Preparation, characterization, and kinetic and thermodynamic studies of mixed-phase TiO2 nanoparticles prepared by detonation method [J]. Results in Physics, 2016, 6: 100–106. | 29 | VASYLKIV O, SAKKA Y, SKOROKHOD V V. Nano-explosion synthesis of multi-component ceramic nano-composites [J]. J. Eur. Ceram. Soc., 2007, 27 (2/3): 585–592. | 30 | WANG X H, LI X J, YAN H H, et al. Nano-MnFe2O4 powder synthesis by detonation of emulsion explosive [J]. Applied Physics A: Materials Science Processing, 2008, 90(3): 417-422. | 31 | QU Y D, LI X J, ZHAO Z, et al. Synthesis of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation and combustion method[J]. Chinese Journal of High Pressure Physics, 2008(2):175-180. | 32 | XIE X H, LI X J, ZHAO Z, et al. Growth and morphology of nanometer LiMn2O4 powder [J]. Powder Technology, 2006, 169(3):143-146. | 33 | LUO N, SUN X, LIANG H L, et al. Gas-liquid detonation synthesis of CNTs@Fe/Fe3C composites and their application as electrode materials for double-layer capacitors[J]. Fuller. Nanotub. Carbon N., 2020, 28(6): 480-486. | 34 | 冯余庆. 爆炸法合成钛酸锂材料的研究[D]. 淮南: 安徽理工大学, 2019. | 34 | FENG Yuqing. Study on synthesis of lithium titanate materials by explosion method [D]. Huainan:Anhui University of Technology, 2019. | 35 | WANG X H, GUO L, LI X J, et al. Controlled detonation synthesis of nano Fe-based oxides/SiO2 core-shell composite particles[J]. Chemical Physics Letters, 2020, 740: 137016. | 36 | HAMMONS J A, NIELSEN M H, BAGGE-HANSEN M, et al. Resolving detonation nanodiamond size evolution and morphology at sub-microsecond timescales during high-explosive detonations[J]. J. Phys. Chem. C, 2019, 123(31): 19153-19164. | 37 | 徐康, 薛群基. 炸药爆炸法合成的纳米金刚石粉[J]. 化学进展, 1997, 9(2): 201-208. | 37 | XU Kang, XUE Qunji. Nanometer-sized diamond powders synthesized by explosive detonation [J]. Progress in Chemistry, 1997, 9(2): 201-208. | 38 | 文潮, 关锦清, 刘晓新, 等. 炸药爆轰合成纳米金刚石的研发历史与现状[J]. 超硬材料工程, 2009, 21(2): 46-51. | 38 | WEN Chao, GUAN Jinqing, LIU Xiaoxin, et al. Developing history and current situation of nano-diamond synthesized by explosive detonation[J]. Superhard Material Engineering, 2009, 21(2): 46-51. | 39 | 苗卫朋, 丁玉龙, 翟黎鹏, 等.爆轰法合成纳米金刚石的分散技术研究进展[J].金刚石与磨料磨具工程, 2019, 39(1): 18-22. | 39 | MIAO Weipeng, DING Yulong, CUI Lipeng, et al. Progress of research on nano-diamond dispersion [J]. Diamond & Abrasives Engineering, 2019, 39(1): 18-22. | 40 | CHEN P W, HUANG F L, YUN S R. Optical characterization of nanocarbon phases in detonation soot and shocked graphite [J]. Diam. Relat. Mater., 2006, 15(9): 1400-1404. | 41 | SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique [J]. Mater. Lett., 2008, 62(4/5): 703-706. | 42 | LU Y, ZHU Z P, LIU Z Y. Catalytic growth of carbon nanotubes through CHNO explosive detonation [J]. Carbon, 2004, 42(2): 361-370. | 43 | ZOU Q, LI Y G, ZOU L H, et al. Characterization of structures and surface states of the nanodiamond synthesized by detonation [J]. Mater. Charact., 2009, 60(11): 1257-1262. | 44 | LUO N, XIANG J X, SHEN T, et al. One-step gas-liquid detonation synthesis of carbon nano-onions and their tribological performance as lubricant additives [J]. Diam. Relat. Mater. 2019, 97:107448. | 45 | PANICH AM, SHAMES AI, MOGILYANSKY D, et al. Detonation nanodiamonds fabricated from tetryl: synthesis, NMR, EPR and XRD study[J]. Diam. Relat. Mater., 2020, 108: 107918. | 46 | BUKAEMSKII A A, BELOSHAPKO A G. Explosive synthesis of ultradisperse aluminum oxide in an oxygen-containing medium [J]. Combust Explo. Shock Waves, 2001, 37(5): 594-599. | 47 | YAN H H, HUN C H, LI X J, et al. Synthesis of carbon-encapsulated iron nanoparticles by gaseous detonation of hydrogen and oxygen at different temperatures within detonation tube [J]. Rare Metal. Mat. Eng., 2015, 44(9): 2152-2155. | 48 | 孔祥清, 朱凯泽, 高化东, 等. 气相爆轰法制备纳米TiO2-SiO2复合氧化物及其表征[J]. 稀有金属与硬质合金, 2018, 46(1): 44-48. | 48 | KONG X Q, ZHU Z K, GAO H D, et al. Gaseous detonation synthesis and characterization of TiO2-SiO2 nanometer composite oxide[J]. Rare Metals and Cemented Carbides, 2018, 46(1): 44-48. | 49 | YAN Honghao, WU Linsong, LI Xiaojie, et al. Detonation synthesis of SnO2 nanoparticles in gas phase [J]. Rare Metal. Mat. Eng., 2013, 42(7):1325-1327. | 50 | 潘训岑, 李雪琪, 李晓杰, 等.气相爆轰法合成超细碳包铁纳米颗粒[J]. 稀有金属材料与工程, 2019, 48(3): 981-986. | 50 | PAN Xuncen, LI Xueqi, LI Xiaojie, et al. Research on synthesis of ultrafine carbon-encapsulated iron by gaseous detonation method [J]. Rare Metal. Mat. Eng., 2019, 48(3):981-986. | 51 | 向俊庠, 罗宁, 马占国, 等. 爆炸合成石墨包覆金属(Fe, Co, Ni)纳米颗粒及其摩擦学性能[J]. 稀有金属材料与工程, 2019, 48(5):1682-1686. | 51 | XIANG Junxiang, LUO Ning, MA Zhanguo, et al. Explosive detonation synthesis and tribological performance of graphite coated metal nanoparticles [J]. Rare Metal. Mat. Eng., 2019, 48(5): 1682-1686. | 52 | TANAKA S, HOKAMOTO K, TORII S, et al. Surface coating by diamond particles on an aluminum substrate by underwater shock wave[J]. J. Mate. Process. Tech., 2010, 210(1): 32-36. | 53 | 曲艳东, 孙从煌, 孔祥清, 等. 一种球形纳米混合氧化物(SiO-FeO)粉体的合成方法: CN105753069A[P]. 2016-07-13. | 53 | QU Yandong, SUN Conghuang, KONG Xiangqing, et al. A method to prepare spherical mixed oxide (SiO-FeO) nanoparticles: CN105753069A[P]. 2016-07-13. | 54 | ZHAO Tiejun, WANG Xiaohong, LI Xiaojie, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials[J]. Mater. Lett., 2019, 236: 179-182. | 55 | LIU B Y, KE S Y, SHAO Y F, et al. Formation mechanism for oxidation synthesis of carbon nanomaterials and detonation process for core-shell structure [J]. Carbon, 2018, 127: 21-30. | 56 | JIANG T, XU K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation [J]. Carbon, 1995, 33(12): 1663-1671. | 57 | JI S, JIANG T, XU K, et al. FTIR study of the adsorption of water on ultradispersed diamond powder surface [J]. Appl. Surf. Sci., 1998, 133(4): 231-238. | 58 | CHEN P W, DING Y S, CHEN Q, et al. Spherical nanometer-sized diamond obtained from detonation[J]. Diam. Relat. Mater., 2000, 9(9):1722-1725. | 59 | XU K, XUE Q J. A new method for deaggregation of nanodiamond from explosive detonation-graphitization-oxidation method [J]. Acta Phys-Chim Sini, 2003, 19(11): 993-995. | 60 | YAMADA K, BURKHARD G, TANABE Y, et al. Nanostructure and formation mechanism of proto diamond shock-synthesized from graphite [J]. Carbon, 1999, 37(2): 275-280. | 61 | 谢圣中. 爆轰纳米金刚石粒度分析研究[J]. 超硬材料工程, 2019, 31(4):18-21. | 61 | XIE Shengzhong. Analysis and research on the particle size of detonation nanodiamond [J]. Superhard Material Engineering, 2019, 31(4):18-21. | 62 | 陈鹏万, 恽寿榕, 陈权, 等. 爆轰合成纳米超微金刚石的热稳定性研究[J]. 金刚石与磨料磨具工程, 1999(5): 3-5. | 62 | CHEN Pengwan, YUN Shourong, CHEN Quan, et al. The thermal stability of ultrafined diamond(UFD) obtained from detonation. [J]. Diamond & Abrasives Engineering, 1999(5): 3-5. | 63 | 曲艳东, 孙从煌, 朱凯泽, 等.气相爆轰合成纳米TiO2粉末的实验研究[J].稀有金属与硬质合金, 2017, 45(6): 48-53. | 63 | QU Yandong, SUN Conghuang, ZHU Kaize, et al. Experimental study on TiO2 nanoparticles prepared by gaseous detonation [J]. Rare Metals and Cemented Carbides, 2017, 45(6): 48-53. | 64 | LI R Y, LI X J, YAN H H, et al. Experimental investigations of the controlled explosive synthesis of ultrafine Al2O3 [J]. Combust. Explo. Shock Waves, 2013, 49(1): 105-108. | 65 | KOLOMIICHUK V N, MAL'KOV I Y. Synthesis of an ultradispersed diamond phase during detonation of composites [J]. Combust. Explo. Shock Waves, 1993, 29(1): 113-112. | 66 | ANISICHKIN V F, DOLGUSHIN D S, PETROV E A. The effect of temperature on the growth of ultradispersed diamonds at a detonation front [J]. Combust. Explo. Shock Waves, 1995, 31(1): 106-109. | 67 | OUYANG X, LI X J, YAN H H, et al. Preparation and characterization of nanosized TiO2 powders by gaseous detonation method [J]. Mater. Sci. Eng. B: Solid., 2008, 153(S1): 21-24. | 68 | 韩志伟, 解立峰, 邓吉平, 等. 爆轰法合成纳米氧化铈粒径的控制[J].高压物理学报, 2014, 28(5): 585-590. | 68 | HAN Zhiwei, XIE Lifeng, DENG Jiping, et al. Size-control of nanostructured Ceria synthesized by detonation method [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 585-590. | 69 | 闫鸿浩, 王胜杰, 李晓杰, 等. 氧气含量比变化对气相爆轰合成纳米二氧化钛的影响[J].材料工程, 2013, 25(6): 82-86. | 69 | YAN Honghao, WANG Shengjie, LI Xiaojie, et al. Influence of oxygen concentration on TiO2 nanoparticles prepared by gaseous detonation [J]. Journal of Materials Engineering, 2013, 25(6): 82-86. | 70 | YAMADA K, SAWAOKA A B. Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism [J]. Carbon, 1994, 32(4): 665-673. | 71 | 王小红, 李晓杰, 闫鸿浩, 等. 一类爆轰合成用乳化炸药的爆轰反应特征[J]. 爆炸与冲击, 2012, 32(5): 523-527. | 71 | WANG Xiaohong, LI Xiaojie, YAN Honghao, et al. Detonation reaction characteristic of emulsion explosives used for nano-materials synthesis [J]. Explosion and Shock Waves, 2012, 32(5): 523-527. | 72 | 罗宁, 李晓杰, 王小红, 等. 硝酸铁对RDX热分解行为的影响[J].火工品, 2010(3): 39-43. | 72 | LUO Ning, LI Xiaojie, WANG Xiaohong, et al. Effect of ferric nitrate on thermal decomposition behavior of RDX [J]. Initiators & Pyrotechnics, 2010(3): 39-43. | 73 | 张厚生, 胡荣祖, 杨德锁.多硝基芳香族化合物的分解热与爆热的关系[J].化学通报, 1987(12):30-32. | 73 | ZHANG Housheng, HU Rongzu, YANG Desuo. Relationship between the heat of decomposition and the heat of explosion of aromaticity [J] Chemistry, 1987(12):30-32. | 74 | WANG X H, LI X J, YAN H H, et al. Research of thermal decomposition kinetic characteristic of emulsion explosive base containing Fe and Mn elements[J]. J. Therm. Anal. Calorim., 2008, 91(2): 545-550. | 75 | QU Y D, LI X J, ZHAO Z, et al. Titania nanocrystalline prepared by detonation method and calculation of detonation parameters [J]. Propell. Explos. Pyrot., 2011, 36(1): 75-79. | 76 | PETROV E A, SAKOVICH G V, BRYLYAKOV P M. Conditions for preserving diamonds when produced by explosion [J]. Sov. Phys. Dokl., 1990, 35: 765-767. | 77 | SAVVAKIN G I, TREFILOV V I. Structure and properties of ultradisperse diamond formed during detonation in various media of condensed, carbon-containing explosives with negative oxygen balance [J]. Sov. Phys. Dokl., 1991, 36(11): 785-787. | 78 | MAL'KOV I Y, FILATOV L I, TITOV V M, et al. Formation of diamond from the liquid phase of carbon [J]. Combust. Explo. Shock Waves, 1993, 29(4): 542-544. | 79 | AMIN M H, MOTTALEBIZADEH A A, BORJI S. Influence of cooling medium on detonation synthesis of ultradispersed diamond [J]. Diam. Relat. Mater., 2009, 18(4): 611-614. | 80 | 马峰, 恽寿榕, 陈权, 等. 装药及外界保护介质对炸药爆轰合成超微金刚石的影响[J].爆炸与冲击, 1998, 18(4): 289-295. | 80 | MA Feng, YUN Shourong, CHEN Quan, et al. The influence of charge and preserving media on the yield of ultrafine diamond formation during detonation [J]. Explosion and Shock Waves, 1998, 18(4): 289-295. | 81 | 王志伟, 李艳国, 邹芹, 等. 后处理对爆轰纳米金刚石表面官能团的影响[J].矿冶工程, 2020, 40(1):125-129. | 81 | WANG Zhiwei, LI Yanguo, ZOU Qin, et al. Effect of post-treatment on surface functional groups of detonation nanodiamonds[J]. Mining and Metallurgical Engineering, 2020, 40(1):125-129. | 82 | DONNET J B, FOUSSON E, WANG T K, et al. Dynamic synthesis of diamonds [J]. Diam. Relat. Mater., 2000, 9(S3/S4/S5/S6): 887-892. | 83 | OKOTRUB A V, BULUSHEVA L G, LARIONOVA I S, et al. Surface electronic structure of detonation nanodiamonds after oxidative treatment [J]. Diam. Relat. Mater., 2007, 16(12): 2090-2092. | 84 | HA S, HONG S P, LEE M, et al. Chemical purification of detonation-synthesized nanodiamond: recycling of H2SO4 and optimization of process parameters [J]. Materials Today Communications, 2019, 21: 100571. | 85 | QU Y D, LI X J, WANG X H, et al. Detonation synthesis of nanosized titanium dioxide powders [J]. Nanotechnology, 2007, 18: 205602. | 86 | PICHOT V, COMET M, FOUSSON E, et al. An efficient purification method for detonation nanodiamonds [J]. Diam. Rel. Mater., 2008, 17(1): 13-22. | 87 | SHENDEROVA O, PETROV I, WALSH J, et al. Modification of detonation nanodiamonds by heat treatment in air [J]. Diam. Rel. Mater, 2006, 15(S11/S12): 1799-1803. | 88 | ACKERMANNA J, KRUEGER A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions [J]. Nanoscale, 2019, 11: 8012-8019. | 89 | KUME A, MOCHALIN V N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond [J]. Diam. Relat. Mater., 2020,103:107705. | 90 | XU K, XUE Q. A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method [J]. Phys. Solid. State., 2003, 46(4): 649-650. | 91 | LI X J, QU Y D, YAN H H, et al. Research progress on nanosized materials synthesized by detonation method [J]. Rare Metal. Mat. Eng., 2007, 36(12): 2069-2074. | 92 | QU Y D, LI X J, YAN H H. Heat transfer analysis of the micron-scale agglomerates of TiO2 precursor during the detonation process [J]. Adv. Mater. Res., 2011, 306/307: 1138-1141. | 93 | 许向阳. 纳米金刚石的解团聚与稳定分散研究[D]. 长沙: 中南大学, 2007. | 93 | XU Xiangyang. Deagglomeration and stable dispersion of detonation nanodiamond particles[D].Changsha: Central South University, 2007. | 94 | TSE J S, KLUG D, GAO F. Hardness of nanocrystalline diamonds [J]. Phys. Rev. B, 2006, 73(14): 140102. | 95 | KRüGER A, LIANG Y J, JARRE G, et al. Surface functionalisation of detonation diamond suitable for biological applications [J]. J. Mater. Chem., 2006, 16(24): 2322-2328. | 96 | 李晓杰, 易彩虹, 王小红, 等. 爆轰纳米金刚石在水中稳定分散研究[J]. 材料科学与工艺, 2011, 19(5): 144-148. | 96 | LI Xiaojie, YI Caihong, WANG Xiaohong, et al. Stable dispersion of detonation nanodiamond in aqueous medium [J]. Mater. Sci. Tech., 2011,19(5): 144-148. | 97 | LI C C, HUANG C L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents [J]. Colloids Surf. A, 2010, 353(1): 52-56. | 98 | ZHU Y, XU X, WANG B, et al. Surface modification and dispersion of nanodiamond in clean oil [J]. China Particuology, 2004, 2(3): 132-134. | 99 | MITEV D P, TOWNSEND A T, PAULL B, et al. Microwave-assisted purification of detonation nanodiamond [J]. Diam. Relat. Mater., 2014, 48: 37-46. | 100 | BERGMANN O R, BARRINGTON J. Effect of explosive shock waves on ceramic powders [J]. J. Am. Ceram. Soc., 1966, 49(9): 502-507. | 101 | 薛鸿陆, 洪延姬. 冲击波对氮化铝粉体的活化及烧结[J].爆炸与冲击, 1995, 15 (4): 322-328. | 101 | XUE Honglu, HONG Yanji. Aluminum nitride activated and sintered under shock pressure [J]. Explosion and Shock Waves, 1995, 15 (4):322-328. | 102 | 钟盛文, 焦永斌, 匡敬忠. 爆炸冲击粉碎纳米粉末硬团聚体的机理分析[J].中国粉体技术, 2000(5): 19-22. | 102 | ZHONG Shenwen, JIAO Yongbin, KUANG Jingzhong. Mechanism analysis of impact crushing of harden nano aggregation powder by shock wave [J]. China Powder Science and Technology, 2000(5): 19-22. | 103 |
[1] |
ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin.
Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles
[J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373.
|
[2] |
WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu.
Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam
[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862.
|
[3] |
XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang.
Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid
[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633.
|
[4] |
XU Guobin, LIU Honghao, LI Jie, GUO Jiaqi, WANG Qi.
Preparation and properties of ZnO QDs water-based inkjet fluorescent ink
[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3114-3122.
|
[5] |
DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi.
Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy
[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065.
|
[6] |
CHEN Yixin, ZHEN Yaoyao, CHEN Ruihao, WU Jiwei, PAN Limei, YAO Chong, LUO Jie, LU Chunshan, FENG Feng, WANG Qingtao, ZHANG Qunfeng, LI Xiaonian.
Preparation of platinum based nanocatalysts and their recent progress in hydrogenation
[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2904-2915.
|
[7] |
LIU Yulong, YAO Junhu, SHU Chuangchuang, SHE Yuehui.
Biosynthesis and EOR application of magnetic Fe3O4 NPs
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2464-2474.
|
[8] |
GUO Wenjie, ZHAI Yuling, CHEN Wenzhe, SHEN Xin, XING Ming.
Analysis of convective heat transfer and thermo-economic performance of Al2O3-CuO/water hybrid nanofluids
[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2315-2324.
|
[9] |
SI Yinfang, HU Yujie, ZHANG Fan, DONG Hao, SHE Yuehui.
Biosynthesis of zinc oxide nanoparticles and its application to antibacterial
[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 2013-2023.
|
[10] |
LI Guangwen, HUA Qucheng, HUANG Zuoxin, DA Zhijian.
Progress on polymethacrylate as viscosity index improvers for lube oil
[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1562-1571.
|
[11] |
SONG Chao, YE Xuemin, LI Chunxi.
Molecular dynamics study on the influence of self-assembly behaviors of nanoparticles and surfactants on the properties of silicone oil/water interface
[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 366-375.
|
[12] |
ZHANG Wei, AN Xingye, LIU Liqin, LONG Yinying, ZHANG Hao, CHENG Zhengbai, CAO Haibing, LIU Hongbin.
Preparation and electrochemical performance of lignin nanoparticles/natural fiber based activated carbon fiber materials
[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3770-3783.
|
[13] |
JIANG Huayi, HU Juan, QI Hongyuan, YOU Yanzhen, WANG Yulong, WU Zhe.
Effect of magnetic nanoparticles type and mass concentration on microwave pyrolysis of oily sludge
[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3908-3914.
|
[14] |
ZHANG Ruirui, WANG Ning, GAO Zhi, YU Xiaohui, YANG Bin.
Analysis of supercooling characteristics of erythritol/mannitol
[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2959-2966.
|
[15] |
SUN Nana, SUN Huina, SHEN Lisha, SU Ruiyu, ZHAO Chao.
Synergistic demulsification of magnetic nanoparticle-microwave on heavy oil O/W emulsion
[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3127-3137.
|
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
|
|
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved.
E-mail: hgjz@cip.com.cn
Powered by Beijing Magtech Co. Ltd
|
|