1.College of Civil Engineering, Dalian Minzu University, Dalian 116650, Liaoning, China 2.School of Civil and Architectural Engineering, Liaoning University of Technology, Jinzhou 121001, Liaoning, China
Yandong QU, Lingxia GAO, Wenjiao ZHANG, Wei LIU. Progress in nanoparticles prepared by detonation method and their agglomeration control[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 5136-5147.
BAGGE-HANSEN M, BASTEA S, HAMMONS J A, et al. Detonation synthesis of carbon nano-onions via liquid carbon condensation [J]. Nature Communications, 2019, 10: 3819.
2
LI X J, QU Y D, XIE X H, et al. Preparation of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation method [J]. Materials Letters, 2006, 60(29): 3673–3677.
QU Yandong, KONG Xiangqing, LI Xiaojie, et al. Effect of thermal treatment on the structural phase transformation of the detonation-prepared TiO2 mixed crystal nanoparticles [J]. Acta Physica Sinica, 2014, 63(3): 037301.
QU Yandong, LI Xiaojie, LIU Yuan. Study on the agglomerate structures of TiO2 nanoparticles [J]. Chinese Journal of High Pressure Physics, 2010, 24(6): 438-442.
6
HENSEL R C, MOREIRA M, RIUL A, et al. Monitoring the dispersion and agglomeration of silver nanoparticles in polymer thin films using localized surface plasmons and ferrell plasmons [J]. Applied Physics Letters, 2020, 116(10):103105.
7
TANG C, LI X, TANG Y, et al. Agglomeration mechanism and restraint measures of SiO2 nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations [J]. Nanotechnology, 2020, 31(16):165702.
LI Xiaojie, WANG Xuguang, ZHANG Yong, et al. Several key problems in explosive synthesis of new materials [C]//WANG Xuguang. Explosive synthetic new material and key technology of high efficiency and safety blasting science and engineering technology [M]. Beijing: Metallurgical Industry Press, 2011.
9
QU Y D, ZHANG W J, KONG X Q, et al. Theoretical investigation of calculating temperatures in the combining zone of Cu/Fe composite plate jointed by explosive welding [J]. Phys. Metals Metallogr., 2016, 117(3): 260–266.
10
KUZ'MIN E V, LYSAK V I, KUZ'MIN S V, et al. Effect of parameters of high-velocity collision on the structure and properties of joints upon explosive welding with simultaneous ultrasonication [J]. Phys. Metals Metallogr., 2019, 120(2): 197-203.
11
STEPAN S B, ALEXANDER N O, NAUMOV STEPAN P, et al. Novel synthesis and properties of hydrogen-free detonation nanodiamond [J]. Propell. Explos. Pyrot., 2015, 40(1):39-45.
12
KOMATSU T. Bulk synthesis and characterization of graphite-like B-C-N and B-C-N hetero diamond compounds [J]. J. Mater. Chem., 2004, 14(2): 221–227.
13
SIVKOV A A, NAIDEN E P, PAK A Y. Dynamic synthesis of ultradispersed crystalline phases of the C-N system[J]. J. Superhard Mater., 2009, 31(5): 300-305.
14
KOJIMA Y, OHFUJI H. Structure and stability of carbon nitride under high pressure and high temperature up to 125GPa and 3000K [J]. Diam. Relat. Mater., 2013, 39(10): 1–7.
15
WANG Y G, LIU F S, LIU Q J, et al. Recover of C3N4 nanoparticles under high-pressure by shock wave loading [J]. Ceram. Int., 2018, 44(16): 19290-19294.
16
LANGENDERFER M J, FAHRENHOLTZ W G, CHERTOPALOV S, et al. Detonation synthesis of silicon carbide nanoparticles [J]. Ceram. Int., 2020, 46(5): 6951-6954.
SHAO Binghuang, ZHANG Xiaodi. Industrialization prospect of explosive synthesis of nano-polycrystalline superhard materials and its products [J]. Diamond and Abrasives Engineering, 2001(6):26-27.
18
TSVIGUNOV A N, FROLOVA L A, KHOTIN V G. Detonation synthesis of cuprite with a cubic face-centered lattice (a review) [J]. Glass & Ceramics, 2003, 60(9/10): 347-350.
19
李晓杰. 氧化物粉末的爆轰合成方法: CN1569617 [P]. 2005-01-26.
19
LI Xiaojie. Detonation synthesis of oxide powder: CN1569617 [P]. 2005-01-26.
20
QU Y D, LI X J, LI R Y, et al. Preparation and characterization of the TiO2 ultrafine particles by detonation method [J]. Mater. Res. Bull., 2008, 43(1): 97-103.
21
LI R Y, LI X J, XIE X H. Explosive synthesis of ultrafine Al2O3 and effect of temperature of explosion [J]. Combust. Explos. Shock Waves, 2006, 42 (5): 607-610.
22
XIE X H, LI X J, YAN H H. Detonation synthesis of zinc oxide nanometer powders [J]. Mater. Lett., 2006, 60(25/26): 3149-3152.
LI Xiaojie, DU Yunyan, WANG Xiaohong, et al. Preparation of nanometer-sized ceria powders by detonation method [J]. Journal of the Chinese Rare Earth Society, 2008, 26(2): 209-212.
HOU Yifeng, LIU Yucun, WANG Zuoshan, et al. Preparation and characterization of nanometer zirconia via explosive detonation technique[J]. Chinese Journal of Energetic Materials, 2011, 19(1): 89–93.
28
QU Y D, SUN C H, SUN G L, et al. Preparation, characterization, and kinetic and thermodynamic studies of mixed-phase TiO2 nanoparticles prepared by detonation method [J]. Results in Physics, 2016, 6: 100–106.
29
VASYLKIV O, SAKKA Y, SKOROKHOD V V. Nano-explosion synthesis of multi-component ceramic nano-composites [J]. J. Eur. Ceram. Soc., 2007, 27 (2/3): 585–592.
30
WANG X H, LI X J, YAN H H, et al. Nano-MnFe2O4 powder synthesis by detonation of emulsion explosive [J]. Applied Physics A: Materials Science Processing, 2008, 90(3): 417-422.
31
QU Y D, LI X J, ZHAO Z, et al. Synthesis of SrAl2O4:Eu2+, Dy3+ nanometer phosphors by detonation and combustion method[J]. Chinese Journal of High Pressure Physics, 2008(2):175-180.
32
XIE X H, LI X J, ZHAO Z, et al. Growth and morphology of nanometer LiMn2O4 powder [J]. Powder Technology, 2006, 169(3):143-146.
33
LUO N, SUN X, LIANG H L, et al. Gas-liquid detonation synthesis of CNTs@Fe/Fe3C composites and their application as electrode materials for double-layer capacitors[J]. Fuller. Nanotub. Carbon N., 2020, 28(6): 480-486.
34
冯余庆. 爆炸法合成钛酸锂材料的研究[D]. 淮南: 安徽理工大学, 2019.
34
FENG Yuqing. Study on synthesis of lithium titanate materials by explosion method [D]. Huainan:Anhui University of Technology, 2019.
35
WANG X H, GUO L, LI X J, et al. Controlled detonation synthesis of nano Fe-based oxides/SiO2 core-shell composite particles[J]. Chemical Physics Letters, 2020, 740: 137016.
36
HAMMONS J A, NIELSEN M H, BAGGE-HANSEN M, et al. Resolving detonation nanodiamond size evolution and morphology at sub-microsecond timescales during high-explosive detonations[J]. J. Phys. Chem. C, 2019, 123(31): 19153-19164.
WEN Chao, GUAN Jinqing, LIU Xiaoxin, et al. Developing history and current situation of nano-diamond synthesized by explosive detonation[J]. Superhard Material Engineering, 2009, 21(2): 46-51.
MIAO Weipeng, DING Yulong, CUI Lipeng, et al. Progress of research on nano-diamond dispersion [J]. Diamond & Abrasives Engineering, 2019, 39(1): 18-22.
40
CHEN P W, HUANG F L, YUN S R. Optical characterization of nanocarbon phases in detonation soot and shocked graphite [J]. Diam. Relat. Mater., 2006, 15(9): 1400-1404.
41
SUN G L, LI X J, QU Y D, et al. Preparation and characterization of graphite nanosheets from detonation technique [J]. Mater. Lett., 2008, 62(4/5): 703-706.
42
LU Y, ZHU Z P, LIU Z Y. Catalytic growth of carbon nanotubes through CHNO explosive detonation [J]. Carbon, 2004, 42(2): 361-370.
43
ZOU Q, LI Y G, ZOU L H, et al. Characterization of structures and surface states of the nanodiamond synthesized by detonation [J]. Mater. Charact., 2009, 60(11): 1257-1262.
44
LUO N, XIANG J X, SHEN T, et al. One-step gas-liquid detonation synthesis of carbon nano-onions and their tribological performance as lubricant additives [J]. Diam. Relat. Mater. 2019, 97:107448.
45
PANICH AM, SHAMES AI, MOGILYANSKY D, et al. Detonation nanodiamonds fabricated from tetryl: synthesis, NMR, EPR and XRD study[J]. Diam. Relat. Mater., 2020, 108: 107918.
46
BUKAEMSKII A A, BELOSHAPKO A G. Explosive synthesis of ultradisperse aluminum oxide in an oxygen-containing medium [J]. Combust Explo. Shock Waves, 2001, 37(5): 594-599.
47
YAN H H, HUN C H, LI X J, et al. Synthesis of carbon-encapsulated iron nanoparticles by gaseous detonation of hydrogen and oxygen at different temperatures within detonation tube [J]. Rare Metal. Mat. Eng., 2015, 44(9): 2152-2155.
KONG X Q, ZHU Z K, GAO H D, et al. Gaseous detonation synthesis and characterization of TiO2-SiO2 nanometer composite oxide[J]. Rare Metals and Cemented Carbides, 2018, 46(1): 44-48.
49
YAN Honghao, WU Linsong, LI Xiaojie, et al. Detonation synthesis of SnO2 nanoparticles in gas phase [J]. Rare Metal. Mat. Eng., 2013, 42(7):1325-1327.
PAN Xuncen, LI Xueqi, LI Xiaojie, et al. Research on synthesis of ultrafine carbon-encapsulated iron by gaseous detonation method [J]. Rare Metal. Mat. Eng., 2019, 48(3):981-986.
XIANG Junxiang, LUO Ning, MA Zhanguo, et al. Explosive detonation synthesis and tribological performance of graphite coated metal nanoparticles [J]. Rare Metal. Mat. Eng., 2019, 48(5): 1682-1686.
52
TANAKA S, HOKAMOTO K, TORII S, et al. Surface coating by diamond particles on an aluminum substrate by underwater shock wave[J]. J. Mate. Process. Tech., 2010, 210(1): 32-36.
QU Yandong, SUN Conghuang, KONG Xiangqing, et al. A method to prepare spherical mixed oxide (SiO-FeO) nanoparticles: CN105753069A[P]. 2016-07-13.
54
ZHAO Tiejun, WANG Xiaohong, LI Xiaojie, et al. Gaseous detonation synthesis of Co@C nanoparticles/CNTs materials[J]. Mater. Lett., 2019, 236: 179-182.
55
LIU B Y, KE S Y, SHAO Y F, et al. Formation mechanism for oxidation synthesis of carbon nanomaterials and detonation process for core-shell structure [J]. Carbon, 2018, 127: 21-30.
56
JIANG T, XU K. FTIR study of ultradispersed diamond powder synthesized by explosive detonation [J]. Carbon, 1995, 33(12): 1663-1671.
57
JI S, JIANG T, XU K, et al. FTIR study of the adsorption of water on ultradispersed diamond powder surface [J]. Appl. Surf. Sci., 1998, 133(4): 231-238.
58
CHEN P W, DING Y S, CHEN Q, et al. Spherical nanometer-sized diamond obtained from detonation[J]. Diam. Relat. Mater., 2000, 9(9):1722-1725.
59
XU K, XUE Q J. A new method for deaggregation of nanodiamond from explosive detonation-graphitization-oxidation method [J]. Acta Phys-Chim Sini, 2003, 19(11): 993-995.
60
YAMADA K, BURKHARD G, TANABE Y, et al. Nanostructure and formation mechanism of proto diamond shock-synthesized from graphite [J]. Carbon, 1999, 37(2): 275-280.
61
谢圣中. 爆轰纳米金刚石粒度分析研究[J]. 超硬材料工程, 2019, 31(4):18-21.
61
XIE Shengzhong. Analysis and research on the particle size of detonation nanodiamond [J]. Superhard Material Engineering, 2019, 31(4):18-21.
QU Yandong, SUN Conghuang, ZHU Kaize, et al. Experimental study on TiO2 nanoparticles prepared by gaseous detonation [J]. Rare Metals and Cemented Carbides, 2017, 45(6): 48-53.
64
LI R Y, LI X J, YAN H H, et al. Experimental investigations of the controlled explosive synthesis of ultrafine Al2O3 [J]. Combust. Explo. Shock Waves, 2013, 49(1): 105-108.
65
KOLOMIICHUK V N, MAL'KOV I Y. Synthesis of an ultradispersed diamond phase during detonation of composites [J]. Combust. Explo. Shock Waves, 1993, 29(1): 113-112.
66
ANISICHKIN V F, DOLGUSHIN D S, PETROV E A. The effect of temperature on the growth of ultradispersed diamonds at a detonation front [J]. Combust. Explo. Shock Waves, 1995, 31(1): 106-109.
67
OUYANG X, LI X J, YAN H H, et al. Preparation and characterization of nanosized TiO2 powders by gaseous detonation method [J]. Mater. Sci. Eng. B: Solid., 2008, 153(S1): 21-24.
HAN Zhiwei, XIE Lifeng, DENG Jiping, et al. Size-control of nanostructured Ceria synthesized by detonation method [J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 585-590.
YAN Honghao, WANG Shengjie, LI Xiaojie, et al. Influence of oxygen concentration on TiO2 nanoparticles prepared by gaseous detonation [J]. Journal of Materials Engineering, 2013, 25(6): 82-86.
70
YAMADA K, SAWAOKA A B. Very small spherical crystals of distorted diamond found in a detonation product of explosive/graphite mixtures and their formation mechanism [J]. Carbon, 1994, 32(4): 665-673.
WANG Xiaohong, LI Xiaojie, YAN Honghao, et al. Detonation reaction characteristic of emulsion explosives used for nano-materials synthesis [J]. Explosion and Shock Waves, 2012, 32(5): 523-527.
LUO Ning, LI Xiaojie, WANG Xiaohong, et al. Effect of ferric nitrate on thermal decomposition behavior of RDX [J]. Initiators & Pyrotechnics, 2010(3): 39-43.
ZHANG Housheng, HU Rongzu, YANG Desuo. Relationship between the heat of decomposition and the heat of explosion of aromaticity [J] Chemistry, 1987(12):30-32.
74
WANG X H, LI X J, YAN H H, et al. Research of thermal decomposition kinetic characteristic of emulsion explosive base containing Fe and Mn elements[J]. J. Therm. Anal. Calorim., 2008, 91(2): 545-550.
75
QU Y D, LI X J, ZHAO Z, et al. Titania nanocrystalline prepared by detonation method and calculation of detonation parameters [J]. Propell. Explos. Pyrot., 2011, 36(1): 75-79.
76
PETROV E A, SAKOVICH G V, BRYLYAKOV P M. Conditions for preserving diamonds when produced by explosion [J]. Sov. Phys. Dokl., 1990, 35: 765-767.
77
SAVVAKIN G I, TREFILOV V I. Structure and properties of ultradisperse diamond formed during detonation in various media of condensed, carbon-containing explosives with negative oxygen balance [J]. Sov. Phys. Dokl., 1991, 36(11): 785-787.
78
MAL'KOV I Y, FILATOV L I, TITOV V M, et al. Formation of diamond from the liquid phase of carbon [J]. Combust. Explo. Shock Waves, 1993, 29(4): 542-544.
79
AMIN M H, MOTTALEBIZADEH A A, BORJI S. Influence of cooling medium on detonation synthesis of ultradispersed diamond [J]. Diam. Relat. Mater., 2009, 18(4): 611-614.
MA Feng, YUN Shourong, CHEN Quan, et al. The influence of charge and preserving media on the yield of ultrafine diamond formation during detonation [J]. Explosion and Shock Waves, 1998, 18(4): 289-295.
WANG Zhiwei, LI Yanguo, ZOU Qin, et al. Effect of post-treatment on surface functional groups of detonation nanodiamonds[J]. Mining and Metallurgical Engineering, 2020, 40(1):125-129.
82
DONNET J B, FOUSSON E, WANG T K, et al. Dynamic synthesis of diamonds [J]. Diam. Relat. Mater., 2000, 9(S3/S4/S5/S6): 887-892.
83
OKOTRUB A V, BULUSHEVA L G, LARIONOVA I S, et al. Surface electronic structure of detonation nanodiamonds after oxidative treatment [J]. Diam. Relat. Mater., 2007, 16(12): 2090-2092.
84
HA S, HONG S P, LEE M, et al. Chemical purification of detonation-synthesized nanodiamond: recycling of H2SO4 and optimization of process parameters [J]. Materials Today Communications, 2019, 21: 100571.
85
QU Y D, LI X J, WANG X H, et al. Detonation synthesis of nanosized titanium dioxide powders [J]. Nanotechnology, 2007, 18: 205602.
86
PICHOT V, COMET M, FOUSSON E, et al. An efficient purification method for detonation nanodiamonds [J]. Diam. Rel. Mater., 2008, 17(1): 13-22.
87
SHENDEROVA O, PETROV I, WALSH J, et al. Modification of detonation nanodiamonds by heat treatment in air [J]. Diam. Rel. Mater, 2006, 15(S11/S12): 1799-1803.
88
ACKERMANNA J, KRUEGER A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions [J]. Nanoscale, 2019, 11: 8012-8019.
89
KUME A, MOCHALIN V N. Sonication-assisted hydrolysis of ozone oxidized detonation nanodiamond [J]. Diam. Relat. Mater., 2020,103:107705.
90
XU K, XUE Q. A new method for deaggregation of nanodiamond from explosive detonation: graphitization-oxidation method [J]. Phys. Solid. State., 2003, 46(4): 649-650.
91
LI X J, QU Y D, YAN H H, et al. Research progress on nanosized materials synthesized by detonation method [J]. Rare Metal. Mat. Eng., 2007, 36(12): 2069-2074.
92
QU Y D, LI X J, YAN H H. Heat transfer analysis of the micron-scale agglomerates of TiO2 precursor during the detonation process [J]. Adv. Mater. Res., 2011, 306/307: 1138-1141.
93
许向阳. 纳米金刚石的解团聚与稳定分散研究[D]. 长沙: 中南大学, 2007.
93
XU Xiangyang. Deagglomeration and stable dispersion of detonation nanodiamond particles[D].Changsha: Central South University, 2007.
94
TSE J S, KLUG D, GAO F. Hardness of nanocrystalline diamonds [J]. Phys. Rev. B, 2006, 73(14): 140102.
95
KRüGER A, LIANG Y J, JARRE G, et al. Surface functionalisation of detonation diamond suitable for biological applications [J]. J. Mater. Chem., 2006, 16(24): 2322-2328.
LI Xiaojie, YI Caihong, WANG Xiaohong, et al. Stable dispersion of detonation nanodiamond in aqueous medium [J]. Mater. Sci. Tech., 2011,19(5): 144-148.
97
LI C C, HUANG C L. Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents [J]. Colloids Surf. A, 2010, 353(1): 52-56.
98
ZHU Y, XU X, WANG B, et al. Surface modification and dispersion of nanodiamond in clean oil [J]. China Particuology, 2004, 2(3): 132-134.
99
MITEV D P, TOWNSEND A T, PAULL B, et al. Microwave-assisted purification of detonation nanodiamond [J]. Diam. Relat. Mater., 2014, 48: 37-46.
100
BERGMANN O R, BARRINGTON J. Effect of explosive shock waves on ceramic powders [J]. J. Am. Ceram. Soc., 1966, 49(9): 502-507.