Chemical Industry and Engineering Progress ›› 2021, Vol. 40 ›› Issue (7): 3870-3877.DOI: 10.16085/j.issn.1000-6613.2020-1592
• Materials science and technology • Previous Articles Next Articles
LI Yan(), SONG Shuang, LIAN Xiaoxue
Received:
2020-08-10
Revised:
2020-09-12
Online:
2021-07-19
Published:
2021-07-06
Contact:
LI Yan
通讯作者:
李酽
作者简介:
李酽(1968—),男,博士,教授,研究方向为功能材料及器件。E-mail:基金资助:
CLC Number:
LI Yan, SONG Shuang, LIAN Xiaoxue. Optical and photocatalytic properties of MoS2/ZnO nanocomposite[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3870-3877.
李酽, 宋双, 连晓雪. MoS2/ZnO纳米复合材料的光学和光催化性能[J]. 化工进展, 2021, 40(7): 3870-3877.
样品 | ZnO | MZ1 | MZ2 | MZ3 | MZ4 | MZ5 |
---|---|---|---|---|---|---|
MoS2质量分数/% | 0 | 0.42 | 0.83 | 1.67 | 2.50 | 6.70 |
苯酚吸附率/% | 18.05 | 2.31 | 7.69 | 3.03 | 3.03 | 0.77 |
样品 | ZnO | MZ1 | MZ2 | MZ3 | MZ4 | MZ5 |
---|---|---|---|---|---|---|
MoS2质量分数/% | 0 | 0.42 | 0.83 | 1.67 | 2.50 | 6.70 |
苯酚吸附率/% | 18.05 | 2.31 | 7.69 | 3.03 | 3.03 | 0.77 |
1 | LI C Y, MA Y Y, ZHENG S Z, et al. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p-n junction as highly efficient visible-light photocatalyst for organic pollutants removal[J]. Journal of Colloid and Interface Science, 2020, 576: 291-301. |
2 | WANG Z Q, ZHANG L L, ZHANG X, et al. Enhanced photocatalytic destruction of pollutants by surface W vacancies in VW-Bi2WO6 under visible light[J]. Journal of Colloid and Interface Science, 2020, 576: 385-393. |
3 | HUANG W, YU Q M, WANG Y Y, et al. Preparation of magnetic Ni0.5Zn0.5Fe₂O₄/ZnO nanocomposites and their photocatalytic performances for methylene blue in aqueous solution[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7506-7515. |
4 | RAHMAN Q I, ALI A, AHMAD N, et al. Synthesis and characterization of CuO rods for enhanced visible light driven dye degradation[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(12): 7716-7723. |
5 | CHO Y S, LEE Y, PARK J K. Fabrication of silica microspheres containing TiO₂ or aluminum zinc oxide nanoparticles via self-assembly: application in water purification[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 6738-6746. |
6 | KWON D, KIM J. Copper-doped ZnO visible light photocatalyst for degradation of methylene blue[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(9): 5604-5608. |
7 | KARTHIKEYAN V, GNANAMOORTHY G, VARUN PRASATH P, et al. Visible-light driven effective photocatalytic degradation of methylene blue dye using perforated curly Zn0.1Ni0.9O nanosheets[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(9): 5759-5764. |
8 | ABDELAAL H M, SHAIKJEE A, ESMAT M. High performing photocatalytic ZnO hollow sub-micro-spheres fabricated by microwave induced self-assembly approach[J]. Ceramics International, 2020, 46(12): 19815-19821. |
9 | SHEN X Y, SHAO H M, LIU Y, et al. Synthesis and photocatalytic performance of ZnO with flower-like structure from zinc oxide ore[J]. Journal of Materials Science & Technology, 2020, 51: 1-7. |
10 | PHURUANGRAT A, PRAPASSORNWATTANA P, THONGTEM S, et al. Synthesis of heterostructure Au/ZnO nanocomposites by microwave-assisted deposition method and their photocatalytic activity in methylene blue degradation[J]. Russian Journal of Physical Chemistry A, 2020, 94(7): 1464-1470. |
11 | KWON D, KIM J. Silver-doped ZnO for photocatalytic degradation of methylene blue[J]. Korean Journal of Chemical Engineering, 2020, 37(7): 1226-1232. |
12 | THINH V D, LAM V D, BACH T N, et al. Enhanced optical and photocatalytic properties of Au/Ag nanoparticle-decorated ZnO films[J]. Journal of Electronic Materials, 2020, 49(4): 2625-2632. |
13 | BAI L, MEI J X. Low amount of Au nanoparticles deposited ZnO nanorods heterojunction photocatalysts for efficient degradation of p-nitrophenol[J]. Journal of Sol-Gel Science and Technology, 2020, 94(2): 468-476. |
14 | XIE Y S, ZHANG N, TANG Z R, et al. Tip-grafted Ag-ZnO nanorod arrays decorated with Au clusters for enhanced photocatalysis[J]. Catalysis Today, 2020, 340: 121-127. |
15 | MURCIA MESA J J, GARCÍA ARIAS J A, ROJAS SARMIENTO H A, et al. Photocatalytic degradation of phenol, catechol and hydroquinone over Au-ZnO nanomaterials[J]. Revista Facultad De Ingeniería Universidad De Antioquia, 2019, 94: 24-32. |
16 | WANG H Y, LI S Y, WAN Q, et al. Highly efficient solution exfoliation of few-layer molybdenum disulfide nanosheets for photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2020, 577: 38-47. |
17 | KUMAR V, SHUKLA R K, SHAKYA J. Effect of ultraviolet irradiation on photo-physical and surface electronic properties of MoS2[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6500-6504. |
18 | XU Y M, YAN L H, SI J H, et al. Nonlinear absorption properties and carrier dynamics in MoS2/graphene van der Waals heterostructures[J]. Carbon, 2020, 165: 421-427. |
19 | WANG J S, SAKTHIVEL R, ANBAZHAGAN R, et al. Electroactive polypyrrole-molybdenum disulfide nanocomposite for ultrasensitive detection of berberine in rat plasma[J]. Analytica Chimica Acta, 2020, 1125: 210-219. |
20 | SILAMBARASAN K, ARCHANA J, HARISH S, et al. One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices[J]. Journal of Materials Science & Technology, 2020, 51: 94-101. |
21 | FAGLIA G, FERRONI M, DANG T T L, et al. Vertically coupling ZnO nanorods onto MoS2 flakes for optical gas sensing[J]. Chemosensors, 2020, 8(1): 19. |
22 | HSU H P, LIN D Y, LU G T, et al. Optical and electrical transport properties of ZnO/MoS2 heterojunction p-n structure[J]. Materials Chemistry and Physics, 2018, 220: 433-440. |
23 | KRISHNAN U, KAUR M, KAUR G, et al. MoS2/ZnO nanocomposites for efficient photocatalytic degradation of industrial pollutants[J]. Materials Research Bulletin, 2019, 111: 212-221. |
24 | SUN Z M, YAO G Y, ZHANG X, et al. Enhanced visible-light photocatalytic activity of kaolinite/g-C3N4 composite synthesized via mechanochemical treatment[J]. Applied Clay Science, 2016, 129: 7-14. |
25 | TADJARODI A, IZADI M, IMANI M. Synthesis and characterization of the special ZnO nanostructure by mechanochemical process[J]. Materials Letters, 2013, 92: 108-110. |
26 | GE L, HAN C C, XIAO X L, et al. Synthesis and characterization of composite visible light active photocatalysts MoS2-g-C3N4 with enhanced hydrogen evolution activity[J]. International Journal of Hydrogen Energy, 2013, 38(17): 6960-6969. |
27 | 李酽, 张琳彬, 李娇, 等. 电场条件下氧化锌结晶特性及极化产物的拉曼光谱分析[J]. 物理学报, 2019, 68(7): 97-104. |
LI Yan, ZHANG Linbin, LI Jiao, et al. Crystallization characteristics of zinc oxide under electric field and Raman spectrum analysis of polarized products[J]. Acta Physica Sinica, 2019, 68(7): 97-104. | |
28 | KENAN Zhang, YUN Zhang, TIANNING Zhang, et al. Vertically coupled ZnO nanorods on MoS2 monolayers with enhanced Raman and photoluminescence emission[J]. Nano Research, 2015(3): 743-750. |
29 | DENG Y, CHEN M J, ZHANG J, et al. Thickness-dependent morphologies of Ag on n-layer MoS2 and its surface-enhanced Raman scattering[J]. Nano Research, 2016, 9(6): 1682-1688. |
30 | WU S, CHEN Z W, WANG T, et al. A facile approach for the fabrication of Au/ZnO-hollow-sphere-monolayer thin films and their photocatalytic properties[J]. Applied Surface Science, 2017, 412:69-76. |
31 | RAHIMI K, MORADI M, DEHGHAN R, et al. Enhancement of sunlight-induced photocatalytic activity of ZnO nanorods by few-layer MoS2 nanosheets[J]. Materials Letters, 2019, 234: 134-137. |
32 | KUMAR S, MAIVIZHIKANNAN V, DREWS J, et al. Fabrication of nanoheterostructures of boron doped ZnO-MoS2 with enhanced photostability and photocatalytic activity for environmental remediation applications[J]. Vacuum, 2019, 163: 88-98. |
[1] | ZHANG Mingyan, LIU Yan, ZHANG Xueting, LIU Yake, LI Congju, ZHANG Xiuling. Research progress of non-noble metal bifunctional catalysts in zinc-air batteries [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 276-286. |
[2] | HU Xi, WANG Mingshan, LI Enzhi, HUANG Siming, CHEN Junchen, GUO Bingshu, YU Bo, MA Zhiyuan, LI Xing. Research progress on preparation and sodium storage properties of tungsten disulfide composites [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 344-355. |
[3] | ZHANG Zuoqun, GAO Yang, BAI Chaojie, XUE Lixin. Thin-film nanocomposite (TFN) mixed matrix reverse osmosis (MMRO) membranes from secondary interface polymerization containing in situ grown ZIF-8 nano-particles [J]. Chemical Industry and Engineering Progress, 2023, 42(S1): 364-373. |
[4] | LIN Xiaopeng, XIAO Youhua, GUAN Yichen, LU Xiaodong, ZONG Wenjie, FU Shenyuan. Recent progress of flexible electrodes for ion polymer-metal composites (IPMC) [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4770-4782. |
[5] | WANG Shangbin, OU Hongxiang, XUE Honglai, CAO Haizhen, WANG Junqi, BI Haipu. Effect of xanthan gum and nano silica on the properties of fluorine-free surfactant mixed solution foam [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4856-4862. |
[6] | YANG Ying, HOU Haojie, HUANG Rui, CUI Yu, WANG Bing, LIU Jian, BAO Weiren, CHANG Liping, WANG Jiancheng, HAN Lina. Coal tar phenol-based carbon nanosphere prepared by Stöber method for adsorption of CO2 [J]. Chemical Industry and Engineering Progress, 2023, 42(9): 5011-5018. |
[7] | YIN Xinyu, PI Pihui, WEN Xiufang, QIAN Yu. Application of special wettability materials for anti-hydrate-nucleation and anti-hydrate-adhesion in oil and gas pipelines [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4076-4092. |
[8] | LYU Chengyuan, ZHANG Han, YANG Mingwang, DU Jianjun, FAN Jiangli. Recent advances of dioxetane-based afterglow system for bio-imaging [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4108-4122. |
[9] | TANG Lei, ZENG Desen, LING Ziye, ZHANG Zhengguo, FANG Xiaoming. Research progress of phase change materials and their application systems for cool storage [J]. Chemical Industry and Engineering Progress, 2023, 42(8): 4322-4339. |
[10] | XU Peiyao, CHEN Biaoqi, KANKALA Ranjith Kumar, WANG Shibin, CHEN Aizheng. Research progress of nanomaterials for synergistic ferroptosis anticancer therapy [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3684-3694. |
[11] | SHAN Xueying, ZHANG Meng, ZHANG Jiafu, LI Lingyu, SONG Yan, LI Jinchun. Numerical simulation of combustion of flame retardant epoxy resin [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3413-3419. |
[12] | XU Wei, LI Kaijun, SONG Linye, ZHANG Xinghui, YAO Shunhua. Research progress of photocatalysis and co-electrochemical degradation of VOCs [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3520-3531. |
[13] | YU Zhiqing, HUANG Wenbin, WANG Xiaohan, DENG Kaixin, WEI Qiang, ZHOU Yasong, JIANG Peng. B-doped Al2O3@C support for CoMo hydrodesulfurization catalyst and their hydrodesulfurization performance [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3550-3560. |
[14] | XIE Zhiwei, WU Zhangyong, ZHU Qichen, JIANG Jiajun, LIANG Tianxiang, LIU Zhenyang. Viscosity properties and magnetoviscous effects of Ni0.5Zn0.5Fe2O4 vegetable oil-based magnetic fluid [J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3623-3633. |
[15] | YANG Jingying, SHI Wansheng, HUANG Zhenxing, XIE Lijuan, ZHAO Mingxing, RUAN Wenquan. Research progress on the preparation of modified nano zero-valent iron materials [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2975-2986. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 548
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 470
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 Copyright © Chemical Industry and Engineering Progress, All Rights Reserved. E-mail: hgjz@cip.com.cn Powered by Beijing Magtech Co. Ltd |